Nejvíce citovaný článek - PubMed ID 9016719
Fibrinogen, an abundant plasma glycoprotein, is involved in the final stage of blood coagulation. Decreased fibrinogen levels, which may be caused by mutations, are manifested mainly in bleeding and thrombotic disorders. Clinically relevant mutations of fibrinogen are listed in the Human Fibrinogen Database. For the αC-connector (amino acids Aα240-410, nascent chain numbering), we have extended this database, with detailed descriptions of the clinical manifestations among members of reported families. This includes the specification of bleeding and thrombotic events and results of coagulation assays. Where available, the impact of a mutation on clotting and fibrinolysis is reported. The collected data show that the Human Fibrinogen Database reports considerably fewer missense and synonymous mutations than the general COSMIC and dbSNP databases. Homozygous nonsense or frameshift mutations in the αC-connector are responsible for most clinically relevant symptoms, while heterozygous mutations are often asymptomatic. Symptomatic subjects suffer from bleeding and, less frequently, from thrombotic events. Miscarriages within the first trimester and prolonged wound healing were reported in a few subjects. All mutations inducing thrombotic phenotypes are located at the identical positions within the consensus sequence of the tandem repeats.
- Klíčová slova
- Human Fibrinogen Database, afibrinogenemia, dysfibrinogenemia, fibrinogen, hypodysfibrinogenemia, hypofibrinogenemia, mutations, αC-connector,
- MeSH
- fibrinogen genetika MeSH
- hemokoagulace genetika MeSH
- krvácení genetika MeSH
- lidé MeSH
- mutace genetika MeSH
- trombóza genetika MeSH
- vyšetření krevní srážlivosti metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fibrinogen MeSH
Oxidative stress in humans is related to various pathophysiological processes, which can manifest in numerous diseases including cancer, cardiovascular diseases, and Alzheimer's disease. On the atomistic level, oxidative stress causes posttranslational modifications, thus inducing structural and functional changes into the proteins structure. This study focuses on fibrinogen, a blood plasma protein that is frequently targeted by reagents causing posttranslational modifications in proteins. Fibrinogen was in vitro modified by three reagents, namely sodium hypochlorite, malondialdehyde, and 3-morpholinosydnonimine that mimic the oxidative stress in diseases. Newly induced posttranslational modifications were detected via mass spectrometry. Electron microscopy was used to visualize changes in the fibrin networks, which highlight the extent of disturbances in fibrinogen behavior after exposure to reagents. We used molecular dynamics simulations to observe the impact of selected posttranslational modifications on the fibrinogen structure at the atomistic level. In total, 154 posttranslational modifications were identified, 84 of them were in fibrinogen treated with hypochlorite, 51 resulted from a reaction of fibrinogen with malondialdehyde, and 19 were caused by 3-morpholinosydnonimine. Our data reveal that the stronger reagents induce more posttranslational modifications in the fibrinogen structure than the weaker ones, and they extensively alter the architecture of the fibrin network. Molecular dynamics simulations revealed that the effect of posttranslational modifications on fibrinogen secondary structure varies from negligible alternations to serious disruptions. Among the serious disruptions is the oxidation of γR375 resulting in the release of Ca2+ ion that is necessary for appropriate fibrin fiber formation. Folding of amino acids γE72-γN77 into a short α-helix is a result of oxidation of γP76 to glutamic acid. The study describes behaviour of fibrinogen coiled-coil connecter in the vicinity of plasmin and hementin cleavage sites.
- MeSH
- fibrinogen chemie metabolismus MeSH
- lidé MeSH
- posttranslační úpravy proteinů * MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibrinogen MeSH
Hereditary dysfibrinogenemia is a rare disorder wherein an inherited abnormality in fibrinogen structure may result in defective fibrin function and/or structure. Congenital hypofibrinogenemia is a rare autosomal bleeding disorder, either recessive or dominant, characterized by a low fibrinogen plasma level. A 28-year-old asymptomatic woman (fibrinogen Rokycany) and a 54-year-old man with thrombosis and pulmonary embolism (fibrinogen Znojmo) were investigated for a suspected fibrinogen mutation after abnormal coagulation tests results were obtained. DNA sequencing showed the heterozygous point mutation Bβ Asn351Lys in fibrinogen Rokycany and the heterozygous point mutation Bβ Arg237Ser in fibrinogen Znojmo, respectively. The kinetics of fibrinopeptide release was found to be normal in both cases. Fibrinolysis was impaired in the Znojmo variant. The average fibril diameters of Znojmo fibrin was slightly increased, but not differing significantly from normal; formed by less fibrils with abrupt fibril terminations. Rheological studies revealed a softer clot. Rokycany fibrin was formed by significantly narrower fibrils than normal fibrin; and the clot was denser than the control clot. Rheological studies revealed a stiffer clot. Impaired fibrinolysis and abnormal clot morphology may be the cause of thrombotic episodes in the patient with Znojmo mutation. New cases of hypofibrinogenemia and dysfibrinogenemia, found by routine coagulation testing, were genetically identified as a novel fibrinogen variants Bβ Asn351Lys (fibrinogen Rokycany) and Bβ Arg237Ser (fibrinogen Znojmo), respectively.
- MeSH
- afibrinogenemie genetika MeSH
- bodová mutace * MeSH
- dospělí MeSH
- fibrinogen genetika MeSH
- fibrinogeny abnormální genetika MeSH
- heterozygot MeSH
- lidé středního věku MeSH
- lidé MeSH
- reologie krve MeSH
- trombóza etiologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BBeta fibrinogen MeSH Prohlížeč
- fibrinogen Rokycany MeSH Prohlížeč
- fibrinogen Znojmo MeSH Prohlížeč
- fibrinogen MeSH
- fibrinogeny abnormální MeSH