BACKGROUND: Accumulation of tau leads to neuroinflammation and neuronal cell death in tauopathies, including Alzheimer's disease. As the disease progresses, there is a decline in brain energy metabolism. However, the role of tau protein in regulating lipid metabolism remains less characterized and poorly understood. METHODS: We used a transgenic rat model for tauopathy to reveal metabolic alterations induced by neurofibrillary pathology. Transgenic rats express a tau fragment truncated at the N- and C-terminals. For phenotypic profiling, we performed targeted metabolomic and lipidomic analysis of brain tissue, CSF, and plasma, based on the LC-MS platform. To monitor disease progression, we employed samples from transgenic and control rats aged 4, 6, 8, 10, 12, and 14 months. To study neuron-glia interplay in lipidome changes induced by pathological tau we used well well-established multicomponent cell model system. Univariate and multivariate statistical approaches were used for data evaluation. RESULTS: We showed that tau has an important role in the deregulation of lipid metabolism. In the lipidomic study, pathological tau was associated with higher production of lipids participating in protein fibrillization, membrane reorganization, and inflammation. Interestingly, significant changes have been found in the early stages of tauopathy before the formation of high-molecular-weight tau aggregates and neurofibrillary pathology. Increased secretion of pathological tau protein in vivo and in vitro induced upregulated production of phospholipids and sphingolipids and accumulation of lipid droplets in microglia. We also found that this process depended on the amount of extracellular tau. During the later stages of tauopathy, we found a connection between the transition of tau into an insoluble fraction and changes in brain metabolism. CONCLUSION: Our results revealed that lipid metabolism is significantly affected during different stages of tau pathology. Thus, our results demonstrate that the dysregulation of lipid composition by pathological tau disrupts the microenvironment, further contributing to the propagation of pathology.
- Klíčová slova
- Lipid droplets, Lipidomics, Metabolomics, Microglia, Neurodegeneration, SHR24, Tau protein,
- MeSH
- Alzheimerova nemoc * patologie MeSH
- krysa rodu Rattus MeSH
- metabolismus lipidů MeSH
- modely nemocí na zvířatech MeSH
- mozek metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- neurofibrilární klubka metabolismus MeSH
- potkani transgenní MeSH
- proteiny tau genetika metabolismus MeSH
- tauopatie * patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny tau MeSH
Glycosphingolipids (GSLs) are amphipathic lipids composed of a sphingoid base and a fatty acyl attached to a saccharide moiety. GSLs play an important role in signal transduction, directing proteins within the membrane, cell recognition, and modulation of cell adhesion. Gangliosides and sulfatides belong to a group of acidic GSLs, and numerous studies report their involvement in neurodevelopment, aging, and neurodegeneration. In this study, we used an approach based on hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry (HRMS/MS) to characterize the glycosphingolipid profile in rat brain tissue. Then, we screened characterized lipids aiming to identify changes in glycosphingolipid profiles in the normal aging process and tau pathology. Thorough screening of acidic glycosphingolipids in rat brain tissue revealed 117 ganglioside and 36 sulfatide species. Moreover, we found two ganglioside subclasses that were not previously characterized-GT1b-Ac2 and GQ1b-Ac2. The semi-targeted screening revealed significant changes in the levels of sulfatides and GM1a gangliosides during the aging process. In the transgenic SHR24 rat model for tauopathies, we found elevated levels of GM3 gangliosides which may indicate a higher rate of apoptotic processes.
- Klíčová slova
- aging, gangliosides, glycosphingolipids, liquid chromatography, mass spectrometry, neurodegeneration, sulfatides, tauopathy,
- MeSH
- chromatografie kapalinová MeSH
- G(M3) gangliosid genetika MeSH
- geneticky modifikovaná zvířata MeSH
- hydrofobní a hydrofilní interakce účinky léků MeSH
- krysa rodu Rattus MeSH
- kyselé glykosfingolipidy genetika izolace a purifikace MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mozek metabolismus patologie MeSH
- neurofibrily genetika patologie MeSH
- proteiny tau genetika MeSH
- stárnutí genetika patologie MeSH
- sulfoglykosfingolipidy izolace a purifikace metabolismus MeSH
- tauopatie genetika metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- G(M3) gangliosid MeSH
- kyselé glykosfingolipidy MeSH
- proteiny tau MeSH
- sulfoglykosfingolipidy MeSH
Alzheimer's disease (AD) and progressive supranuclear palsy are two common neurodegenerative tauopathies, and the most common cause of progressive brain dementia in elderly affecting more than 35 million people. The tauopathies are characterized by abnormal deposition of microtubule associated protein tau into intracellular neurofibrillary tangles composed mainly of the hyperphosphorylated form of the protein. The diagnosis of tauopathies is based on the presence of clinical features and pathological changes. Over the last decade, there has been an intensive search for novel biochemical markers for clinical diagnosis of AD and other tauopathies. In the present study, we used transgenic rat model for tauopathy expressing human truncated tau protein (aa 151-391/4R) to analyze the cerebrospinal fluid (CSF) peptidome using liquid chromatography - matrix assisted laser desorption/ionization mass spectrometry (LC-MALDI TOF/TOF). From 345 peptides, we identified a total of 175 proteins. Among them, 17 proteins were significantly altered in the CSF of transgenic rats. The following proteins were elevated in the CSF of transgenic rats when compared to the control animals: neurofilament light and medium chain, apolipoprotein E, gamma-synuclein, chromogranin A, reticulon-4, secretogranin-2, calsyntein-1 and -3, endothelin-3, neuroendocrine protein B72A, alpha-1-macroglobulin, and augurin. Interestingly most of the identified proteins were previously linked to AD and other tauopathies, indicating the significance of transgenic animals in biomarker validation.
- Klíčová slova
- Cerebrospinal fluid, LC-MALDI MS, peptidomics, rat model, tauopathy,
- MeSH
- chromatografie kapalinová MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- peptidy mozkomíšní mok MeSH
- potkani transgenní MeSH
- proteiny tau genetika MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- tauopatie mozkomíšní mok genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy MeSH
- proteiny tau MeSH
Hyperhomocysteinemia is a common occurrence in many neurodegenerative diseases, including tauopathies. We developed and validated a simple and sensitive liquid chromatography-tandem mass spectrometry method for the analysis of homocysteine (Hcy) in rat plasma. Hcy was analyzed using ultra-performance liquid chromatography on a C8 column with detection by positive ESI tandem mass spectrometry. For optimal retention and separation, we used ion-pair reagent-heptafluorobutyric acid. The method utilizes heavy labeled internal standard and does not require any derivatization or extraction step. The procedure was validated in compliance with the European Medicines Agency guideline. The limit of detection was 0.15 µmol/L and the limit of quantification was 0.5 µmol/L. The method showed excellent linearity with regression coefficients higher than 0.99. The accuracy was in the range of 93-98%. The inter-day precision (n = 5 days), expressed as % relative standard deviation, was in the range 3-8%. Using this method, we analyzed plasma samples from two transgenic lines of the rat model for tauopathies.
- MeSH
- chromatografie kapalinová metody MeSH
- homocystein krev MeSH
- krysa rodu Rattus MeSH
- limita detekce MeSH
- lineární modely MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- potkani Wistar MeSH
- reprodukovatelnost výsledků MeSH
- stabilita léku MeSH
- studie případů a kontrol MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- tauopatie krev MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- homocystein MeSH