Edge computing is a novel technology, which is closely related to the concept of Internet of Things. This technology brings computing resources closer to the location where they are consumed by end-users-to the edge of the cloud. In this way, response time is shortened and lower network bandwidth is utilized. Workflow scheduling must be addressed to accomplish these goals. In this paper, we propose an enhanced firefly algorithm adapted for tackling workflow scheduling challenges in a cloud-edge environment. Our proposed approach overcomes observed deficiencies of original firefly metaheuristics by incorporating genetic operators and quasi-reflection-based learning procedure. First, we have validated the proposed improved algorithm on 10 modern standard benchmark instances and compared its performance with original and other improved state-of-the-art metaheuristics. Secondly, we have performed simulations for a workflow scheduling problem with two objectives-cost and makespan. We performed comparative analysis with other state-of-the-art approaches that were tested under the same experimental conditions. Algorithm proposed in this paper exhibits significant enhancements over the original firefly algorithm and other outstanding metaheuristics in terms of convergence speed and results' quality. Based on the output of conducted simulations, the proposed improved firefly algorithm obtains prominent results and managed to establish improvement in solving workflow scheduling in cloud-edge by reducing makespan and cost compared to other approaches.
- Keywords
- Edge computing, Firefly algorithm, Genetic operator, Quasi-reflection-based learning, Swarm intelligence, Workflow scheduling,
- Publication type
- Journal Article MeSH
With the whirlwind evolution of technology, the quantity of stored data within datasets is rapidly expanding. As a result, extracting crucial and relevant information from said datasets is a gruelling task. Feature selection is a critical preprocessing task for machine learning to reduce the excess data in a set. This research presents a novel quasi-reflection learning arithmetic optimization algorithm - firefly search, an enhanced version of the original arithmetic optimization algorithm. Quasi-reflection learning mechanism was implemented for enhancement of population diversity, while firefly algorithm metaheuristics were used to improve the exploitation abilities of the original arithmetic optimization algorithm. The aim of this wrapper-based method is to tackle a specific classification problem by selecting an optimal feature subset. The proposed algorithm is tested and compared with various well-known methods on ten unconstrained benchmark functions, then on twenty-one standard datasets gathered from the University of California, Irvine Repository and Arizona State University. Additionally, the proposed approach is applied to the Corona disease dataset. The experimental results verify the improvements of the presented method and their statistical significance.
- Keywords
- Aritmetic optimisation algorithm, Feature selection, Firefly algorithm, Metaheuristics, Quasi-reflection-based learning,
- Publication type
- Journal Article MeSH
The research proposed in this article presents a novel improved version of the widely adopted firefly algorithm and its application for tuning and optimising XGBoost classifier hyper-parameters for network intrusion detection. One of the greatest issues in the domain of network intrusion detection systems are relatively high false positives and false negatives rates. In the proposed study, by using XGBoost classifier optimised with improved firefly algorithm, this challenge is addressed. Based on the established practice from the modern literature, the proposed improved firefly algorithm was first validated on 28 well-known CEC2013 benchmark instances a comparative analysis with the original firefly algorithm and other state-of-the-art metaheuristics was conducted. Afterwards, the devised method was adopted and tested for XGBoost hyper-parameters optimisation and the tuned classifier was tested on the widely used benchmarking NSL-KDD dataset and more recent USNW-NB15 dataset for network intrusion detection. Obtained experimental results prove that the proposed metaheuristics has significant potential in tackling machine learning hyper-parameters optimisation challenge and that it can be used for improving classification accuracy and average precision of network intrusion detection systems.
- Keywords
- Benchmark, Firefly algorithm, Intrusion detection, Machine learning, Optimisation,
- Publication type
- Journal Article MeSH
Feature selection is one of the most important challenges in machine learning and data science. This process is usually performed in the data preprocessing phase, where the data is transformed to a proper format for further operations by machine learning algorithm. Many real-world datasets are highly dimensional with many irrelevant, even redundant features. These kinds of features do not improve classification accuracy and can even shrink down performance of a classifier. The goal of feature selection is to find optimal (or sub-optimal) subset of features that contain relevant information about the dataset from which machine learning algorithms can derive useful conclusions. In this manuscript, a novel version of firefly algorithm (FA) is proposed and adapted for feature selection challenge. Proposed method significantly improves performance of the basic FA, and also outperforms other state-of-the-art metaheuristics for both, benchmark bound-constrained and practical feature selection tasks. Method was first validated on standard unconstrained benchmarks and later it was applied for feature selection by using 21 standard University of California, Irvine (UCL) datasets. Moreover, presented approach was also tested for relatively novel COVID-19 dataset for predicting patients health, and one microcontroller microarray dataset. Results obtained in all practical simulations attest robustness and efficiency of proposed algorithm in terms of convergence, solutions' quality and classification accuracy. More precisely, the proposed approach obtained the best classification accuracy on 13 out of 21 total datasets, significantly outperforming other competitor methods.
- Keywords
- COVID-19 dataset, Feature selection, Firefly algorithm, Genetic operators, Quasi-reflection-based learning, Swarm intelligence,
- Publication type
- Journal Article MeSH
The Internet of Things (IoT) is a universal network to supervise the physical world through sensors installed on different devices. The network can improve many areas, including healthcare because IoT technology has the potential to reduce pressure caused by aging and chronic diseases on healthcare systems. For this reason, researchers attempt to solve the challenges of this technology in healthcare. In this paper, a fuzzy logic-based secure hierarchical routing scheme using the firefly algorithm (FSRF) is presented for IoT-based healthcare systems. FSRF comprises three main frameworks: fuzzy trust framework, firefly algorithm-based clustering framework, and inter-cluster routing framework. A fuzzy logic-based trust framework is responsible for evaluating the trust of IoT devices on the network. This framework identifies and prevents routing attacks like black hole, flooding, wormhole, sinkhole, and selective forwarding. Moreover, FSRF supports a clustering framework based on the firefly algorithm. It presents a fitness function that evaluates the chance of IoT devices to be cluster head nodes. The design of this function is based on trust level, residual energy, hop count, communication radius, and centrality. Also, FSRF involves an on-demand routing framework to decide on reliable and energy-efficient paths that can send the data to the destination faster. Finally, FSRF is compared to the energy-efficient multi-level secure routing protocol (EEMSR) and the enhanced balanced energy-efficient network-integrated super heterogeneous (E-BEENISH) routing method based on network lifetime, energy stored in IoT devices, and packet delivery rate (PDR). These results prove that FSRF improves network longevity by 10.34% and 56.35% and the energy stored in the nodes by 10.79% and 28.51% compared to EEMSR and E-BEENISH, respectively. However, FSRF is weaker than EEMSR in terms of security. Furthermore, PDR in this method has dropped slightly (almost 1.4%) compared to that in EEMSR.
- MeSH
- Algorithms MeSH
- Fuzzy Logic * MeSH
- Internet of Things * MeSH
- Delivery of Health Care MeSH
- Health Facilities MeSH
- Publication type
- Journal Article MeSH
Flying ad-hoc networks (FANETs) include a large number of drones, which communicate with each other based on an ad hoc model. These networks provide new opportunities for various applications such as military, industrial, and civilian applications. However, FANETs have faced with many challenges like high-speed nodes, low density, and rapid changes in the topology. As a result, routing is a challenging issue in these networks. In this paper, we propose an energy-aware routing scheme in FANETs. This scheme is inspired by the optimized link state routing (OLSR). In the proposed routing scheme, we estimate the connection quality between two flying nodes using a new technique, which utilizes two parameters, including ratio of sent/received of hello packets and connection time. Also, our proposed method selects multipoint relays (MPRs) using the firefly algorithm. It chooses a node with high residual energy, high connection quality, more neighborhood degree, and higher willingness as MPR. Finally, our proposed scheme creates routes between different nodes based on energy and connection quality. Our proposed routing scheme is simulated using the network simulator version 3 (NS3). We compare its simulation results with the greedy optimized link state routing (G-OLSR) and the optimized link state routing (OLSR). These results show that our method outperforms G-OLSR and OLSR in terms of delay, packet delivery rate, throughput, and energy consumption. However, our proposed routing scheme increases slightly routing overhead compared to G-OLSR.
- Publication type
- Journal Article MeSH
Load frequency control (LFC) plays a critical role in ensuring the reliable and stable operation of power plants and maintaining a quality power supply to consumers. In control engineering, an oscillatory behavior exhibited by a system in response to control actions is referred to as "Porpoising". This article focused on investigating the causes of the porpoising phenomenon in the context of LFC. This paper introduces a novel methodology for enhancing the performance of load frequency controllers in power systems by employing rat swarm optimization (RSO) for tuning and detecting the porpoising feature to ensure stability. The study focuses on a single-area thermal power generating station (TPGS) subjected to a 1% load demand change, employing MATLAB simulations for analysis. The proposed RSO-based PID controller is compared against traditional methods such as the firefly algorithm (FFA) and Ziegler-Nichols (ZN) technique. Results indicate that the RSO-based PID controller exhibits superior performance, achieving zero frequency error, reduced negative peak overshoot, and faster settling time compared to other methods. Furthermore, the paper investigates the porpoising phenomenon in PID controllers, analyzing the location of poles in the s-plane, damping ratio, and control actions. The RSO-based PID controller demonstrates enhanced stability and resistance to porpoising, making it a promising solution for power system control. Future research will focus on real-time implementation and broader applications across different control systems.
- Keywords
- Automatic generation control (AGC), Firefly algorithm, Load frequency control, PID control schemes, Porpoising, Rat swarm optimization,
- Publication type
- Journal Article MeSH
Load frequency control (LFC) is critical for maintaining stability in interconnected power systems, addressing frequency deviations and tie-line power fluctuations due to system disturbances. Existing methods often face challenges, including limited robustness, poor adaptability to dynamic conditions, and early convergence in optimization. This paper introduces a novel application of the sinh cosh optimizer (SCHO) to design proportional-integral (PI) controllers for a hybrid photovoltaic (PV) and thermal generator-based two-area power system. The SCHO algorithm's balanced exploration and exploitation mechanisms enable effective tuning of PI controllers, overcoming challenges such as local minima entrapment and limited convergence speeds observed in conventional metaheuristics. Comprehensive simulations validate the proposed approach, demonstrating superior performance across various metrics. The SCHO-based PI controller achieves faster settling times (e.g., 1.6231 s and 2.4615 s for frequency deviations in Area 1 and Area 2, respectively) and enhanced robustness under parameter variations and solar radiation fluctuations. Additionally, comparisons with the controllers based on the salp swarm algorithm, whale optimization algorithm, and firefly algorithm confirm its significant advantages, including a 25-50% improvement in integral error indices (IAE, ITAE, ISE, ITSE). These results highlight the SCHO-based PI controller's effectiveness and reliability in modern power systems with hybrid and renewable energy sources.
- Keywords
- Load frequency control, PI controller, Sinh cosh optimizer (SCHO), Two-area system,
- Publication type
- Journal Article MeSH