Irreversible electroporation Dotaz Zobrazit nápovědu
Atrial fibrillation (AF) is one of the most important problems in modern cardiology. Thermal ablation therapies, especially radiofrequency ablation (RF), are currently "gold standard" to treat symptomatic AF by localized tissue necrosis. Despite the improvements in reestablishing sinus rhythm using available methods, both success rate and safety are limited by the thermal nature of procedures. Thus, while keeping the technique in clinical practice, safer and more versatile methods of removing abnormal tissue are being investigated. This review focuses on irreversible electroporation (IRE), a nonthermal ablation method, which is based on the unrecoverable permeabilization of cell membranes caused by short pulses of high voltage/current. While still in its preclinical steps for what concerns interventional cardiac electrophysiology, multiple studies have shown the efficacy of this method on animal models. The observed remodeling process shows this technique as tissue specific, triggering apoptosis rather than necrosis, and safer for the structures adjacent the myocardium. So far, proposed IRE methodologies are heterogeneous. The number of devices (both generators and applicators), techniques, and therapeutic goals impair the comparability of performed studies. More questions regarding systemic safety and optimal processes for AF treatment remain to be answered. This work provides an overview of the electroporation process, and presents different results obtained by cardiology-oriented research groups that employ IRE ablation, with focus of AF-related targets. This contribution on the topic aspires to be a practical guide to approach IRE ablation for cardiac arrhythmias, and to highlight controversial features and existing knowledge, to provide background for future improved experimentation with IRE in arrhythmology.
- Klíčová slova
- atrial fibrillation, fibrosis, irreversible electroporation, nonthermal ablation, pulmonary vein isolation,
- MeSH
- ablace * škodlivé účinky MeSH
- akční potenciály MeSH
- apoptóza MeSH
- elektroporace * MeSH
- fibrilace síní diagnóza patofyziologie terapie MeSH
- lidé MeSH
- remodelace síní * MeSH
- srdeční frekvence MeSH
- srdeční síně patologie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Pulsed field ablation (PFA) of atrial fibrillation is a new method in clinical practice. Despite a favorable safety profile of PFA in atrial fibrillation ablation, rare cases of renal failure, probably due to hemolysis, have recently been reported. OBJECTIVE: The aim of this study was to determine the rate of hemolysis and cardiac cell death during in vitro PFA with different electric field intensities. METHODS: Blood samples from healthy volunteers and mouse HL-1 cardiomyocyte cell lines were subjected to in vitro irreversible electroporation using 216 bipolar pulses, each lasting 2 μs with intervals of 5 μs, repeated 20 times at a frequency of 1 Hz. These pulses varied from 500 V to 1500 V. Cell-free hemoglobin levels were assessed spectrophotometrically, and red blood cell microparticles were evaluated by flow cytometry. Cardiomyocyte death was quantified with propidium iodide. RESULTS: Pulsed field energy (1000 V/cm, 1250 V/cm, and 1500 V/cm) was associated with a significant increase in cell-free hemoglobin (0.32 ± 0.16 g/L, 2.2 ± 0.96 g/L, and 5.7 ± 0.39 g/L; P < .01) and similar increase in the concentration of red blood cell microparticles. Significant rates of cardiomyocyte death were observed at electric field strengths of 750 V/cm, 1000 V/cm, 1250 V/cm, and 1500 V/cm (26.5% ± 5.9%, 44.3% ± 6.2%, 55.5% ± 6.9%, and 74.5% ± 17.8% of cardiomyocytes; P < .01). CONCLUSION: The most effective induction of cell death in vitro was observed at 1500 V/cm. This intensity was also associated with a significant degree of hemolysis.
- Klíčová slova
- Atrial fibrillation, Cardiomyocytes, Hemolysis, Irreversible electroporation, Pulsed field ablation,
- MeSH
- elektroporace * metody MeSH
- fibrilace síní patofyziologie chirurgie MeSH
- hemolýza * fyziologie MeSH
- kardiomyocyty * metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši MeSH
- průtoková cytometrie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: To demonstrate the feasibility of irreversible electroporation (IRE) for treating biliary metal stent occlusion in an experimental liver model. METHODS AND MATERIALS: IRE was performed using an expandable tubular IRE-catheter placed in nitinol stents in the porcine liver. A 3-electrode IRE-catheter was connected to an IRE-generator and one hundred 100μs pulses of constant voltage (300, 650, 1000, and 1300 V) were applied. Stent occlusion was simulated by insertion of liver tissue both ex vivo (n = 94) and in vivo in 3 pigs (n = 14). Three scenarios of the relationship between the stent, electrodes, and inserted tissue (double contact, single contact, and stent mesh contact) were studied. Electric current was measured and resistance and power calculated. Pigs were sacrificed 72 h post-procedure. Harvested samples (14 experimental, 13 controls) underwent histopathological analysis. RESULTS: IRE application was feasible at 300 and 650 V for the single and double contact setup in both ex vivo and in vivo studies. Significant differences in calculated resistance between double contact and single contact settings were observed (ex-vivo p ˂ 0.0001, in-vivo p = 0.02; Mann-Whitney). A mild temperature increase of the surrounding liver parenchyma was noted with increasing voltage (0.9-5.9 °C for 300-1000 V). The extent of necrotic changes in experimental samples in vivo correlated with the measured electric current (r2 = 0.39, p = 0.01). No complications were observed during or after the in-vivo procedure. CONCLUSION: Endoluminal IRE using an expandable tubular catheter in simulated metal stent occlusion is feasible. The relationship of active catheter electrodes to stent ingrowth tissue can be estimated based on resistance values.
- Klíčová slova
- Irreversible electroporation, experimental model, metal stent occlusion, metal stent recanalization, thermocamera,
- MeSH
- ablace * MeSH
- elektroporace * MeSH
- katétry MeSH
- prasata MeSH
- stenty MeSH
- teoretické modely MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- elektroporace MeSH
- fibrilace síní * MeSH
- lidé MeSH
- nízká teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
PURPOSE: To compare the accumulation and effect of liposomal doxorubicin in liver tissue treated by radiofrequency ablation (RFA) and irreversible electroporation (IRE) in in vivo porcine models. MATERIALS AND METHODS: Sixteen RFA and 16 IRE procedures were performed in healthy liver of two groups of three pigs. Multi-tined RFA parameters included: 100 W, target temperature 105°C for 7 min. 100 IRE pulses were delivered using two monopolar electrodes at 2250 V, 1 Hz, for 100 µsec. For each group, two pigs received 50 mg liposomal doxorubicin (0.5 mg/kg) as a drip infusion during ablation procedure, with one pig serving as control. Samples were harvested from the central and peripheral zones of the ablation at 24 and 72 h. Immunohistochemical analysis to evaluate the degree of cellular stress, DNA damage, and degree of apoptosis was performed. These and the ablation sizes were compared. Doxorubicin concentrations were also analyzed using fluorescence photometry of homogenized tissue. RESULTS: RFA treatment zones created with concomitant administration of doxorubicin at 24 h were significantly larger than controls (2.5 ± 0.3 cm vs. 2.2 ± 0.2 cm; p = 0.04). By contrast, IRE treatment zones were negatively influenced by chemotherapy (2.2 ± 0.4 cm vs. 2.6 ± 0.4 cm; p = 0.05). At 24 h, doxorubicin concentrations in peripheral and central zones of RFA were significantly increased in comparison with untreated parenchyma (0.431 ± 0.078 µg/g and 0.314 ± 0.055 µg/g vs. 0.18 ± 0.012 µg/g; p < 0.05). Doxorubicin concentrations in IRE zones were not significantly different from untreated liver (0.191 ± 0.049 µg/g and 0.210 ± 0.049 µg/g vs. 0.18 ± 0.012 µg/g). CONCLUSIONS: Whereas there is an increased accumulation of periprocedural doxorubicin and an associated increase in ablation zone following RFA, a contrary effect is noted with IRE. These discrepant findings suggest that different mechanisms and synergies will need to be considered in order to select optimal adjuvants for different classes of ablation devices.
- Klíčová slova
- Irreversible electroporation, Liposomal doxorubicin, Radiofrequency ablation,
- MeSH
- doxorubicin aplikace a dávkování analogy a deriváty metabolismus MeSH
- elektroporace metody MeSH
- játra chirurgie MeSH
- modely u zvířat MeSH
- polyethylenglykoly metabolismus MeSH
- prasata MeSH
- radiofrekvenční ablace metody MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin MeSH
- liposomal doxorubicin MeSH Prohlížeč
- polyethylenglykoly MeSH
A rapid and simple method has been developed for the electroporation of Clostridium perfringens with plasmid DNA. The new improvements, harvesting cells early in the logarithmic stage of growth, keeping the cells at room temperature and the absence of post-shock incubation on ice increased transformation efficiency by one order of magnitude.
The application of pulsed electric fields (PEFs) is becoming a promising tool for application in biotechnology, and the food industry. However, real-time monitoring of the efficiency of PEF treatment conditions is challenging, especially at the industrial scale and in continuous production conditions. To overcome this challenge, we have developed a straightforward setup capable of real-time detection of yeast biological autoluminescence (BAL) during pulsing. Saccharomyces cerevisiae culture was exposed to 8 pulses of 100 µs width with electric field strength magnitude 2-7 kV cm-1. To assess the sensitivity of our method in detecting yeast electroporation, we conducted a comparison with established methods including impedance measurements, propidium iodide uptake, cell growth assay, and fluorescence microscopy. Our results demonstrate that yeast electroporation can be instantaneously monitored during pulsing, making it highly suitable for industrial applications. Furthermore, the simplicity of our setup facilitates its integration into continuous liquid flow systems. Additionally, we have established quantitative indicators based on a thorough statistical analysis of the data that can be implemented through a dedicated machine interface, providing efficiency indicators for analysis.
- Klíčová slova
- autoluminescence, electroporation, pulsed electric fields, yeast in biotechnology,
- MeSH
- elektroporace * metody MeSH
- Saccharomyces cerevisiae * růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Irreversible electroporation (IRE) is a quite novel method of tissue ablation. Its mechanism of action that does not use thermal energy is the most important feature of the method. Current experience with IRE in animal studies and in clinical practice are summarized in the paper. In particular, the paper is focused on using IRE in locally advanced pancreatic carcinoma. METHOD: The basic principle of IRE is that it causes micropores in the phospholipid membrane of cells. This leads to an impairment of cellular homeostasis and programmed cell death - apoptosis. Because of absence of protein denaturation this method spares tubular structures like vessels and ducts. This is the key feature that allows to use IRE in the pancreas where common thermic ablative procedures cannot be used for difficult anatomic circumstances and resulting injury of surrounding structures. PRE-CLINICAL AND CLINICAL STUDIES: The ability to spare vascular structures and ducts was confirmed in many animal studies. Subsequently, IRE was safely utilized also in human liver, pancreas, lung and kidneys. IRE in the treatment of advanced pancreatic cancer: Most experience with IRE ablation has been gathered for locally advanced pancreatic carcinoma where clinical studies published in the recent 5 years have provided encouraging results. CONCLUSION: Irreversible electroporation is a safe method used to decrease tumour mass in pancreatic cancer. Further studies are needed to determine its therapeutic efficiency.
A rapid and simple electroporation method to transform osmotolerant yeast Zygosaccharomyces rouxii has been developed and conditions for efficient transformation of mutants derived from different Z. rouxii wild-type strains optimized.
Cre-loxP recombination system is a powerful tool for genome engineering. One of its applications is found in genetic mouse models that often require to induce Cre recombination in preimplantation embryos. Here, we describe a technically simple, affordable and highly efficient protocol for Cre protein delivery into mouse zygotes by electroporation. We show that electroporation based delivery of Cre has no negative impact on embryo survival and the method can be easily combined with in vitro fertilization resulting in a significantly faster generation of desired models. Lastly, we demonstrate that Cre protein electroporation is suitable for allelic conversion in primary cells derived from conditional mouse models.
- Klíčová slova
- Conditional, Delivery, EC, MEF, Recombination, Transgenesis, loxP,
- MeSH
- alely MeSH
- elektroporace MeSH
- integrasy genetika MeSH
- myši MeSH
- zvířata MeSH
- zygota * MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Cre recombinase MeSH Prohlížeč
- integrasy MeSH