Maturation (IVM) Dotaz Zobrazit nápovědu
Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes' maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB⁺ oocytes were directly exposed to microarray assays and RT-qPCR ("before IVM" group), or first in vitro matured and then if classified as BCB⁺ passed to molecular analyses ("after IVM" group). As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes' successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte's achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.
- Klíčová slova
- gamete biology, in vitro maturation (IVM), molecular biology, oocytes, pig,
- MeSH
- apoptóza MeSH
- buněčná adheze MeSH
- buněčná diferenciace MeSH
- down regulace * MeSH
- genové regulační sítě * MeSH
- IVM techniky veterinární MeSH
- oocyty cytologie metabolismus MeSH
- oogeneze MeSH
- prasata MeSH
- proliferace buněk MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Although in vitro maturation (IVM) of oocytes has been used for a relatively long time, during which the culture conditions have improved remarkably, the resulting germ cells are still not fully comparable to the cells obtained from the ovary in many important aspects, namely in fertilization rate and subsequent embryonic development. Some of the differences between IVM and in vivo maturation (IVV) oocytes were already discovered, including variability in spindle assembly and morphology. In this study we focused on a role of molecular motor Kif11 (hereafter referred to as Eg5) in maintaining bipolar spindle structure in IVM and IVV oocytes. Our experiments revealed that in IVM oocytes, Eg5 is abundant on meiosis II spindle, which makes these cells more sensitive to Eg5 inhibition than IVV oocytes. We further demonstrate that this sensitivity is acquired gradually with exposure to the in vitro conditions. This is a remarkable difference in function of spindle apparatus between IVM and IVV oocytes, and we believe our results are important not only for understanding of the chromosome segregation in mammalian oocytes but also because they indicate cells are using alternative pathways to achieve the same function when exposed to different conditions.
- Klíčová slova
- Eg5, Kif11, germ cells, in vitro maturation, meiosis, oocyte maturation, spindle,
- MeSH
- aparát dělícího vřeténka metabolismus MeSH
- IVM techniky * MeSH
- kineziny metabolismus MeSH
- meióza fyziologie MeSH
- myši MeSH
- oocyty metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kineziny MeSH
BACKGROUND: The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However, the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation. METHODS: Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix microarray approach and validated by RT-qPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group. RESULTS: The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated and 40 were up-regulated. The DAVID database indicated a "BMP signaling pathway" ontology group, which was significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta receptor-type III (TGFβR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1). CONCLUSIONS: Increased expression of CHRDL1, FST, TGFβR3, SMAD4, and ID1 transcripts before IVM suggested a subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before IVM increased expression was observed.
- Klíčová slova
- In vitro maturation, Microarray, Oocytes, Pig,
- MeSH
- IVM techniky * MeSH
- kostní morfogenetické proteiny genetika metabolismus MeSH
- kumulární buňky cytologie metabolismus fyziologie MeSH
- mikročipová analýza MeSH
- oocyty cytologie metabolismus fyziologie MeSH
- oogeneze genetika MeSH
- prasata genetika metabolismus MeSH
- signální transdukce genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kostní morfogenetické proteiny MeSH
Genes influencing oocyte maturation may be valuable for predicting their developmental potential, as well as discerning the mechanistic pathways regulating oocyte development. In the presented research microarray gene expression analysis of immature and in vitro matured porcine oocytes was performed. Two groups of oocytes were compared in the study: before (3 × n = 50) and after in vitro maturation (3 × n = 50). The selection of viable oocytes was performed using the brilliant cresyl blue (BCB) test. Furthermore, microarrays and RT-qPCR was used to analyze the transcriptome of the oocytes before and after IVM. The study focused on the genes undergoing differential expression in two gene-ontology groups: "Cellular response to hormone stimulus" and "Cellular response to unfolded protein", which contain genes that may directly or indirectly be involved in signal transduction during oocyte maturation. Examination of all the genes of interest showed a lower level of their expression after IVM. From the total number of genes in these gene ontologies ten of the highest change in expression were identified: FOS, ID2, BTG2, CYR61, ESR1, AR, TACR3, CCND2, EGR2 and TGFBR3. The successful maturation of the oocytes was additionally confirmed with the use of lipid droplet assay. The genes were briefly described and related to the literature sources, to investigate their potential roles in the process of oocyte maturation. The results of the study may serve as a basic molecular reference for further research aimed at improving the methods of oocyte in vitro maturation, which plays an important role in the procedures of assisted reproduction.
- Klíčová slova
- Microarray, Mitochondrial activity, Oocyte maturation, Pig,
- MeSH
- eosin chemie MeSH
- hematoxylin chemie MeSH
- hormony genetika metabolismus MeSH
- IVM techniky * MeSH
- kultivované buňky MeSH
- lipidy analýza MeSH
- oocyty růst a vývoj metabolismus MeSH
- oxaziny chemie MeSH
- prasata MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Brilliant Cresyl Blue MeSH Prohlížeč
- eosin MeSH
- hematoxylin MeSH
- hormony MeSH
- lipidy MeSH
- oxaziny MeSH
The main goal of this study was to characterize the expression patterns of genes which play a role in mitochondrial DNA biogenesis and metabolism during the maturation of bovine oocytes with different meiotic competence and health. Meiotically more and less competent oocytes were obtained separately either from medium (MF) or small (SF) follicles and categorized according to oocyte morphology into healthy and light-atretic. The four oocyte categories were matured and collected after 0, 3, 7, 16 and 24 h of maturation. Either total RNA or poly(A) RNA were extracted from oocytes and the expression of selected mitochondrial translational factors (TFAM, TFB1M, and TFB2M), MATER, and Luciferase as external standard was assessed using a real-time RT-PCR. The level of TFAM, TFB1M and MATER poly(A) RNA transcripts significantly decreased during maturation in both healthy and light-atretic MF and SF oocytes. On the other hand, the level of TFB2M poly(A) increased during maturation in healthy and light-atretic SF oocytes, in contrast to MF oocytes. The abundance of TFAM total RNA was significantly higher after maturation than that before maturation in all oocyte categories. However, no differences in TFB1M and TFB2M total RNA were found in any oocyte categories. It can be concluded that the gene expression patterns differ in maturing bovine oocytes in dependence on their meiotic competence and health. The TFAM and TFB1M poly(A) RNAs are actively deadenylated at different meiotic stages but TFB2M poly(A) RNA remains elevated in light-atretic less competent oocytes until the completion of meiosis.
- Klíčová slova
- Bovine, Gene expression, Maturation, Mitochondria, Oocyte,
- MeSH
- IVM techniky veterinární MeSH
- mitochondriální DNA biosyntéza MeSH
- mitochondriální geny * MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- oocyty metabolismus MeSH
- skot fyziologie MeSH
- zvířata MeSH
- Check Tag
- skot fyziologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA MeSH
- mitochondriální proteiny MeSH
STUDY QUESTION: Which actively translated maternal transcripts are differentially regulated between clinically relevant in vitro and in vivo maturation (IVM) conditions in mouse oocytes and zygotes? SUMMARY ANSWER: Our findings uncovered significant differences in the global transcriptome as well as alterations in the translation of specific transcripts encoding components of energy production, cell cycle regulation, and protein synthesis in oocytes and RNA metabolism in zygotes. WHAT IS KNOWN ALREADY: Properly regulated translation of stored maternal transcripts is a crucial factor for successful development of oocytes and early embryos, particularly due to the transcriptionally silent phase of meiosis. STUDY DESIGN, SIZE, DURATION: This is a basic science study utilizing an ICR mouse model, best suited for studying in vivo maturation. In the treatment group, fully grown germinal vesicle oocytes from stimulated ovaries were in vitro matured to the metaphase II (MII) stage either as denuded without gonadotropins (IVM DO), or as cumulus-oocyte complexes (IVM COC) in the presence of 0.075 IU/ml recombinant FSH (rFSH) and 0.075 IU/ml recombinant hCG (rhCG). To account for changes in developmental competence, IVM COC from non-stimulated ovaries (IVM COC-) were included. In vivo matured MII oocytes (IVO) from stimulated ovaries were used as a control after ovulation triggering with rhCG. To simulate standard IVM conditions, we supplemented media with amino acids, vitamins, and bovine serum albumin. Accordingly, in vitro pronuclear zygotes (IMZ) were generated by IVF from IVM DO, and were compared to in vivo pronuclear zygotes (IVZ). All experiments were performed in quadruplicates with samples collected for both polyribosome fractionation and total transcriptome analysis. Samples were collected over three consecutive months. PARTICIPANTS/MATERIALS, SETTING, METHODS: All ICR mice were bred under legal permission for animal experimentation (no. MZE-24154/2021-18134) obtained from the Ministry of Agriculture of the Czech Republic. Actively translated (polyribosome occupied) maternal transcripts were detected in in vitro and in vivo matured mouse oocytes and zygotes by density gradient ultracentrifugation, followed by RNA isolation and high-throughput RNA sequencing. Bioinformatic analysis was performed and subsequent data validation was done by western blotting, radioactive isotope, and mitotracker dye labelling. MAIN RESULTS AND THE ROLE OF CHANCE: Gene expression analysis of acquired polysome-derived high-throughput RNA sequencing data revealed significant changes (RPKM ≥ 0.2; P ≤ 0.005) in translation between in vitro and in vivo matured oocytes and respectively produced pronuclear zygotes. Surprisingly, the comparison between IVM DO and IVM COC RNA-seq data of both fractionated and total transcriptome showed very few transcripts with more than a 2-fold difference. Data validation by radioactive isotope labelling revealed a decrease in global translation bof20% in IVM DO and COC samples in comparison to IVO samples. Moreover, IVM conditions compromised oocyte energy metabolism, which was demonstrated by both changes in polysome recruitment of each of 13 mt-protein-coding transcripts as well as by validation using mitotracker red staining. LARGE SCALE DATA: The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE241633 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241633). LIMITATIONS, REASONS FOR CAUTION: It is extremely complicated to achieve in vivo consistency in animal model systems such as porcine or bovine. To achieve a high reproducibility of in vivo stimulations, the ICR mouse model was selected. However, careful interpretation of our findings with regard to assisted reproductive techniques has to be made by taking into consideration intra-species differences between the mouse model and humans. Also, the sole effect of the cumulus cells' contribution could not be adequately addressed by comparing IVM COC and IVM DO, because the IVM DO were matured without gonadotropin supplementation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings confirmed the inferiority of standard IVM technology compared with the in vivo approach. It also pointed at compromised biological processes employed in the critical translational regulation of in vitro matured MII oocytes and pronuclear zygotes. By highlighting the importance of proper translational regulation during in vitro oocyte maturation, this study should prompt further clinical investigations in the context of translation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Czech Grant Agency (22-27301S), Charles University Grant Agency (372621), Ministry of Education, Youth and Sports (EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE), and Institutional Research Concept RVO67985904. No competing interest is declared.
- Klíčová slova
- in vitro maturation, ART, embryo, human, mouse, oocyte, reproduction,
- MeSH
- choriogonadotropin farmakologie MeSH
- embryonální vývoj * fyziologie MeSH
- IVM techniky * MeSH
- kumulární buňky * metabolismus MeSH
- myši inbrední ICR * MeSH
- myši MeSH
- oocyty * metabolismus MeSH
- proteosyntéza MeSH
- transkriptom MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- zygota metabolismus MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- choriogonadotropin MeSH
Habitat degradation leads to small and fragmented populations, lower genetic variability and fertility overtime. Assisted reproductive techniques represent important tools to cope with the dramatic loss of biodiversity. Fallow deer (Dama dama), beyond its high commercial value and wide distribution, may represent the most suitable model to study endangered cervids. In this study, oocytes were recovered post-mortem from fallow deer during the breeding and no breeding seasons and were in vitro matured (IVM). The ability of cryopreserved thawed sperm samples recovered by electroejaculation from four adult males was tested by in vitro fertilization of IVM oocytes. The number of oocytes collected per ovary did significantly vary across seasons from 6.2 ± 0.92 during breeding season to 10.4 ± 1.26 during no breeding season (p = .006). Oocytes collected during the breeding season showed higher in vitro fertilization rate compared to the no breeding season (p = .045). However, no embryos reached the blastocyst stage. Semen samples obtained by electroejaculation were successfully cryopreserved, although the cryopreservation process negatively affected most kinetic parameters, mainly at 2 hr post-thawing. Moreover, the percentage of rapid spermatozoa significantly decreased between fresh samples and at 2 hr post-thawing, whereas the percentage of slow spermatozoa increased across the same period (p < .05). Our study provides the logistic steps for the application of assisted reproductive techniques in fallow deer and might be of great interest for genetic resource bank planning.
- Klíčová slova
- fallow deer, in vitro maturation, oocytes, post-mortem collection,
- MeSH
- embryo savčí MeSH
- fertilizace in vitro veterinární MeSH
- IVM techniky veterinární MeSH
- kryoprezervace veterinární MeSH
- motilita spermií MeSH
- odběr oocytu veterinární MeSH
- uchování spermatu veterinární MeSH
- vysoká zvěř fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mammalian cumulus-oocyte complexes (COCs) reach full developmental capability during folliculogenesis and oogenesis. It is well recognized that only gametes achieving MII stage after in vivo or in vitro maturation (IVM) are successfully fertilized by a single spermatozoon. Although the process of oocyte nuclear and/or cytoplasmic maturation in pigs is well determined, there exist many differences that promote these processes in vivo and in vitro. Therefore, this study aimed to investigate the differences in RNA expression profiles between porcine oocytes before and after IVM using microarray and real-time quantitative polymerase chain reaction (RT-qPCR) assays. Experiments were performed on oocytes isolated from 55 pubertal crossbred Landrace gilts. The oocytes were analyzed both before and after IVM and only Brilliant Cresyl Blue (BCB)-positive gametes were used for subsequent microarray analysis (Affymetrix) and RT-qPCR analysis. The microarray assay, which measures expression of 12,258 transcripts, revealed 419 differentially expressed transcripts in porcine oocytes, from which 379 were downregulated and 40 were upregulated before IVM compared to those analyzed after IVM. After DAVID analysis, we found eight different transcripts, including IHH, BMP1, WWTR1, CHRDL1, KLF10, EIF2AK3, MMP14, and STC1. Their expression is related to the "bone development" ontology group and was further subjected to hierarchical clusterization. Using RT-qPCR analysis, we confirmed the results of the microarray assay, showing increased expression of the eight genes in oocytes before IVM compared to oocytes after maturation in vitro. It has been suggested that "bone development" belongs to one ontological group involving genes substantially upregulated in porcine oocytes before IVM. We suggest that the gamete mRNA expression profile before IVM may comprise stored transcripts, which are templates for protein biosynthesis following fertilization. We also hypothesize that these mRNAs may be a specific "fingerprint" of folliculogenesis and oogenesis in pigs.
- Klíčová slova
- in vitro maturation, microarray, oocytes, pig,
- MeSH
- aktivace transkripce MeSH
- down regulace MeSH
- exprese genu fyziologie MeSH
- genová ontologie MeSH
- IVM techniky MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- messenger RNA biosyntéza genetika MeSH
- oocyty cytologie metabolismus MeSH
- oogeneze genetika MeSH
- prasata genetika růst a vývoj MeSH
- prekurzory RNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- stanovení celkové genové exprese MeSH
- transkriptom fyziologie MeSH
- upregulace MeSH
- vývoj kostí genetika fyziologie MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
- prekurzory RNA MeSH
This study was aimed at investigating zona pellucida glycoproteins (ZP) ZP2, ZP3 mRNA expression as well as ZP3, ZP4 (ZPB) protein distribution before and after in vitro maturation (IVM) in canine oocytes. The cumulus-oocyte complexes (COCs) were recovered from 27 anoestrous mongrel bitches and matured for 72 h in TCM199 medium. The canine COCs were analysed before and after IVM. Using real-time quantitative polymerase chain reaction (RQ-PCR), both groups of oocytes were analysed for detection of ZP2 and ZP3 mRNA profiles as well as using confocal microscopic analysis for observation of ZP3 and ZP4 protein distribution. In post-IVM canine oocytes an increase in transcript content of ZP2 and ZP3 genes as well as a decrease in ZP3 and ZP4 protein levels were observed when compared with pre-IVM oocytes. Moreover, the ZP4 protein before IVM was significantly distributed in the peripheral area of cytoplasm, whereas after IVM it was localized rather than in the entire cytoplasm. In contrast, the ZP3 protein was found both before and after IVM was distributed in the peripheral area of the cytoplasm. In conclusion, we suggest that the expression of ZP2 and ZP3 genes is associated with the maturation stage of canine oocytes, as higher mRNAs levels were found after IVM. However, a decreased expression of ZP3 and ZP4 proteins after IVM suggests maturation-dependent down-regulation of these protein translations, which may result in disturbed fertilization.
- Klíčová slova
- Bitch, Glycoproteins, Oocyte, Subcellular protein distribution, Zona pellucida,
- MeSH
- glykoproteiny zona pellucida MeSH
- IVM techniky metody MeSH
- konfokální mikroskopie metody MeSH
- kumulární buňky cytologie fyziologie MeSH
- membránové glykoproteiny genetika metabolismus MeSH
- oocyty fyziologie MeSH
- psi MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese MeSH
- vaječné proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykoproteiny zona pellucida MeSH
- membránové glykoproteiny MeSH
- receptory buněčného povrchu MeSH
- vaječné proteiny MeSH
This study was designed to specify chromatin and mitochondrial patterns in bovine oocytes with different meiotic competence in relation to maturation progress, resumption of meiosis, MII onset and completion of maturation. Oocytes with greater or lesser meiotic competence, recovered separately from medium (MF) and small follicles (SF), were categorized according to morphology. Four oocyte categories, healthy and light-atretic MF and healthy and light-atretic SF oocytes were matured and collected at 0, 3, 7, 16 and 24 h of maturation. Specific differences in terms of chromatin and mitochondrial patterns were found among the maturing oocyte categories. Resumption of meiosis was accelerated in light-atretic oocytes, as compared with healthy oocytes, regardless of their meiotic competence. More competent oocytes activated mitochondria twice during maturation, before resumption of meiosis and before completion of maturation, while less competent oocytes did it only once, before completion of maturation. Changes in mitochondrial activity differed in light-atretic compared with healthy in both more and less competent oocytes. Healthy meiotically more competent oocytes formed clusters and produced ATP for the whole time of maturation until its completion, while light-atretic more competent oocytes and healthy less competent oocytes reduced these activities earlier, at MII onset. Contrary to these oocyte categories, light-atretic less competent oocytes increased cluster formation significantly before resumption of meiosis. It can be concluded that bovine oocytes with different meiotic competence and health differed in the kinetics of mitochondrial patterns during maturation.
- MeSH
- chromatin ultrastruktura MeSH
- IVM techniky * MeSH
- konfokální mikroskopie MeSH
- meióza * MeSH
- mitochondrie ultrastruktura MeSH
- oocyty růst a vývoj ultrastruktura MeSH
- skot anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- skot anatomie a histologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH