Spodoptera frugiperda (fall armyworm) poses a substantial risk to crops worldwide, resulting in considerable economic damage. The gut microbiota of insects plays crucial roles in digestion, nutrition, immunity, growth and, sometimes, the degradation of insecticides. The current study examines the effect of synthetic insecticides on the gut microbiome of third instar S. frugiperda larvae using both culture-dependent techniques and 16S rRNA gene sequencing for bacterial community profiling and diversity analysis. In untreated larvae, the sequencing approach revealed a diverse microbiome dominated by the phyla Firmicutes, Proteobacteria and Bacteroidota, with key genera including Bacteroides, Faecalibacterium and Pelomonas. In parallel, 323 bacterial strains were isolated and assigned to the orders Bacillales, Burkholderiales, Enterobacterales, Flavobacteriales, Lactobacillales, Micrococcales, Neisseriaies, Pseudomonadales, Sphingobacteriales and Xanthomonadales. The prevailing culturable species included Serratia marcescens, Klebsiella variicola and Enterobacter quasiroggenkampii. Treatment with sublethal concentrations of three insecticides (broflanilide, spinosad and indoxacarb) caused significant changes in gut microbiome diversity and composition. Treated larvae showed a shift towards increased Proteobacteria abundance and decreased Firmicutes. Specifically, Acinetobacter and Rhodococcus were dominant in treated samples. Functional predictions highlighted significant metabolic versatility involving nutrient processing, immune response, detoxification, xenobiotic metabolism, and stress response, suggesting microbial adaptation to insecticide exposure. Network correlation analysis highlighted disrupted microbial interactions and altered community structures under insecticide treatment. These findings enhance our understanding of how insecticides impact the gut microbiota in S. frugiperda and may inform future strategies for managing pest resistance through microbiome-based approaches.
- Keywords
- bacterial communities, gut microbiome, insect microbiome, insecticide toxicity, microbial diversity, microbial interactions, pest management, synthetic insecticides,
- MeSH
- Bacteria * drug effects genetics classification metabolism isolation & purification MeSH
- Insecticides * pharmacology MeSH
- Larva microbiology drug effects growth & development MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Spodoptera * microbiology growth & development drug effects MeSH
- Gastrointestinal Microbiome * drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Insecticides * MeSH
- RNA, Ribosomal, 16S MeSH
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.
- MeSH
- Anthelmintics * pharmacology metabolism pharmacokinetics MeSH
- Biotransformation MeSH
- Nematoda * drug effects metabolism enzymology MeSH
- Drug Resistance * MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Anthelmintics * MeSH
Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm Spodoptera littoralis. Co-exposure to Zn and Fe improved leafworm survival (100% at 10-20 mg, 85% at 40 mg) compared to separate exposures. Low Zn/Fe/PQ toxicity likely stemmed from metal complexes having efficient chelating activity, enhancing resilience. Low exposure to Zn, Fe, and Zn/Fe increased food intake and larval weight and affected frass production. Interestingly, the combined application of Zn/Fe/PQ increased larval and pupal weight in surviving individuals. Zn/Fe was found to be crucial in the ecdysis of larvae into pupae, resulting in reduced larval mortality and a prolonged pupal ecdysis duration (% days). Providing important information regarding physiological responses and pest management, this study demonstrated the realistic conditions caused by the interactions of biological trace elements, such as Zn and Fe, with PQ. A disc diffusion susceptibility test in hemolymph bacteria revealed differences among Zn, Zn/Fe, and Zn/Fe/PQ, suggesting that their interaction might play an immunomodulatory role in S. littoralis.
- Keywords
- co-interaction, immunomodulation, pest management, physiological toxicity, pollutants, sublethal exposure,
- Publication type
- Journal Article MeSH
Understanding the lethal and sublethal impacts of pesticides on biocontrol agents is crucial for the successful implementation of integrated pest management (IPM) programs. This study investigated the sublethal effects of fenpyroximate, a broad-spectrum acaricide/insecticide, on the fitness of Scolothrips longicornis Priesner (Thysanoptera: Thripidae), a key predator of the two-spotted spider mite, in controlled laboratory environments. Adult predators were exposed to pesticide residues on leaf discs to estimate parameters of concentration-mortality response models for females and males and calculate median lethal concentration (LC50) as well as sublethal concentrations (LC10, LC20 and LC30) used in subsequent bioassays. The estimated LC50 values for female and male predators were 18.32 and 15.49 µg a.i./mL, respectively. Results of sublethal concentrations experiments did not reveal any significant impact on the development of each stage or the survival rate of S. longicornis juveniles compared to those in the control group. However, the longevity of adult males and females was significantly lower at all sublethal concentrations than in the control. Moreover, the fecundity decreased significantly at all sublethal concentration treatments. With one exception (LC10), both the adult preoviposition period and total preoviposition period increased with increasing sublethal concentrations compared to those of the control. The shortest oviposition period (9.30 days) was observed at the LC30. For the life table parameters of S. longicornis females treated with sublethal concentrations, a significant decrease was found in the intrinsic rate of increase, net reproductive rate and finite rate of increase, whereas the mean generation time in the LC10 treatment was lower than that in the other treatments. This underscores the imperative need to consider sublethal concentration effects of fenpyroximate in the strategic design and implementation of IPM systems.
- Keywords
- Tetranychus urticae, Acaricide, Demographic parameters, Predatory thrips, Side effects, Two-sex life table,
- MeSH
- Acaricides * toxicity MeSH
- Longevity drug effects MeSH
- Propionates * toxicity MeSH
- Pyrazoles * toxicity MeSH
- Tetranychidae MeSH
- Thysanoptera * physiology drug effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acaricides * MeSH
- Benzoates MeSH
- fenpyroximate MeSH Browser
- Propionates * MeSH
- Pyrazoles * MeSH
The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates. We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of investigated biological endpoints (from molecular to individual levels) were compiled to get a better comprehension of the effects of MNP according to different factors such as the shape, the polymer type, the organism, the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature, yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experimental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a protocol to standardize ecotoxicological studies.
- Keywords
- Microplastics, Nanoplastics, Plastic pollution, Terrestrial environments, Toxicity,
- MeSH
- Invertebrates * drug effects MeSH
- Ecosystem * MeSH
- Soil Pollutants toxicity analysis MeSH
- Microplastics * toxicity MeSH
- Nanoparticles toxicity chemistry MeSH
- Plastics toxicity chemistry MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Soil Pollutants MeSH
- Microplastics * MeSH
- Plastics MeSH
Essential oils (EOs) are plant metabolites with important insecticidal effects. Nevertheless, information on the efficacy of the major substances on aphids and their natural enemies is still missing. The objective of this paper is, therefore, to identify the efficacy of selected EO majority substances-β-citronellol, carvacrol, isoeugenol, and linalool, including their binary mixtures-on the mortality and fertility of the aphid Metopolophium dirhodum, an important cereal pest. The best efficacy was proven for the binary mixture of β-citronellol and linalool (1:1 ratio), for which the estimated LC50(90) is 0.56(1.58) mL L-1. This binary mixture applied in sublethal concentrations significantly reduced aphid fertility. It was found that the phenomenon can be attributed to β-citronellol, as the females treated with LC30 laid 45.9% fewer nymphs, on average, compared to the control. Although β-citronellol and linalool, including their 1:1 mixture, showed very good efficacy on aphid mortality, they were, on the other hand, very friendly to the larvae of Aphidoletes aphidimyza and Chrysoperla carnea, which are important aphid predators. Based on our results, the newly discovered synergically acting binary mixture β-citronellol/linalool can be recommended as an efficient substance suitable for the further development of botanical insecticides used against aphids.
- Keywords
- Aphidoletes aphidimyza, Chrysoperla carnea, binary mixture, botanical pesticides, essential oils, synergism aphids, terpenoids,
- Publication type
- Journal Article MeSH
Anthropogenic polymeric particles pollute even the most remote ecosystems and may compromise organisms' behaviour and movement skills. It is expected that invasive species cope better with pollutants than native species (i.e., pollution resistance hypothesis). In this study, invasive gibel carp (Carassius gibelio) and native crucian carp (Carassius carassius) were used as model organisms. Specimens were fed daily with food pellets (1 % body weight) added with 0.1 % polyethylene (PE), tire wear particles (TWPs) and control. Their behavioural parameters were compared before and after 14 and 60 days of exposure. Additionally, we evaluated burst swimming capacity after 60 days of exposure to the treatments. The fishes exposed to the PE and TWPs treatments showed significant trends toward increased boldness scores and, in the PE treatment, higher utilization of the open field, and both behavioural changes are associated with higher risk-taking. Invasive gibel carp had substantially better swimming performance than crucian carp, but the expected trend in relation to the treatments was not found. Fish exposed to sublethal doses of PE and TWPs showed signs of behavioural changes after two months of exposure that may affect risk-taking behaviour, which might impact species interactions with predators.
- Keywords
- Behavioural changes, Habitat degradation, Invasion ecology, Invasive species, Pollution,
- MeSH
- Cyprinidae * MeSH
- Ecosystem MeSH
- Carps * MeSH
- Polyethylene toxicity MeSH
- Risk-Taking MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Polyethylene MeSH
A challenge in bee protection is to assess the risks of pesticide-pathogen interactions. Lotmaria passim, a ubiquitous unicellular parasite in honey bees, is considered harmful under specific conditions. Imidacloprid causes unpredictable side effects. Research indicates that both L. passim and imidacloprid may affect the physiology, behavior, immunity, microbiome and lifespan of honey bees. We designed cage experiments to test whether the infection of L. passim is affected by a sublethal dose of imidacloprid. Workers collected at the time of emergence were exposed to L. passim and 2.5 μg/L imidacloprid in the coexposure treatment group. First, samples of bees were taken from cages since they were 5 days old and 3 days postinfection, i.e., after finishing an artificial 24 h L. passim infection. Additional bees were collected every two additional days. In addition, bees frozen at the time of emergence and collected from the unexposed group were analyzed. Abdomens were analyzed using qPCR to determine parasite load, while corresponding selected heads were subjected to a label-free proteomic analysis. Our results show that bees are free of L. passim at the time of emergence. Furthermore, imidacloprid considerably increased the prevalence as well as parasite loads in individual bees. This means that imidacloprid facilitates infection, enabling faster parasite spread in a colony and potentially to surrounding colonies. The proteomic analysis of bee heads showed that imidacloprid neutralized the increased transferrin 1 expression by L. passim. Importantly, this promising marker has been previously observed to be upregulated by infections, including gut parasites. This study contributes to understanding the side effects of imidacloprid and demonstrates that a single xenobiotic/pesticide compound can interact with the gut parasite. Our methodology can be used to assess the effects of different compounds on L. passim.
- Keywords
- Apis mellifera, Insecticide, Pollinator, Sublethal effect, Synergistic effect, Transferrin 1 precursor,
- MeSH
- Nitro Compounds toxicity MeSH
- Insecticides * toxicity MeSH
- Neonicotinoids toxicity MeSH
- Parasites * MeSH
- Pesticides * MeSH
- Prevalence MeSH
- Proteomics MeSH
- Trypanosomatina * parasitology MeSH
- Bees MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitro Compounds MeSH
- imidacloprid MeSH Browser
- Insecticides * MeSH
- Neonicotinoids MeSH
- Pesticides * MeSH
Ants are key ecosystem service providers and can serve as important biological control agents in pest management. However, the effects of insecticides on common farmland ant species are poorly understood. We tested the effects of three commonly used insecticides on ants (Hymenoptera, Formicidae). The tested insecticides were acetamiprid (neonicotinoid; formulated as Mospilan 20 SP), deltamethrin (pyrethroid; formulated as Sanium Ultra), and sulfoxaflor (sulfilimine; formulated as Gondola). We tested two ant (Hymenoptera: Formicidae) species with different colony founding strategies, Lasius niger (Linnaeus, 1758) and Myrmica rubra (Linnaeus, 1758). We sprayed their queens with insecticides at concentrations recommended for use in foliar applications in agriculture, i.e., at 1.25 g L-1 (acetamiprid), 0.6 g L-1 (sulfoxaflor), and 0.875 g L-1 (deltamethrin). Further, we diluted the compounds in distilled water and tested them at 10%, 1%, and 0.1% of the field-recommended concentrations, and used distilled water as a control. We monitored the survival of the queens and the number of eggs laid. All three tested insecticides caused severe lethal and sublethal concentration-dependent effects. Even at concentrations three orders of magnitudes lower than recommended for field applications, significantly lower numbers of eggs were found in the queens' nests. The extent of the sublethal effects of acetamiprid and sulfoxaflor was concentration-dependent and differed between the two ant species. Besides bees and bumblebees, ants represent an important group of hymenopterans that are severely affected even by low concentrations of the tested compounds and therefore should be included in risk assessment schemes.
- MeSH
- Ecosystem MeSH
- Ants * MeSH
- Insecticides * toxicity MeSH
- Neonicotinoids toxicity MeSH
- Bees MeSH
- Water MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- acetamiprid MeSH Browser
- decamethrin MeSH Browser
- Insecticides * MeSH
- Neonicotinoids MeSH
- sulfoxaflor MeSH Browser
- Water MeSH
Oxysterols play significant roles in many physiological and pathological processes including cancer. They modulate some of the cancer hallmarks pathways, influence the efficacy of anti-cancer drugs, and associate with patient survival. In this study, we aimed to analyze the role of 7-ketocholesterol (7-KC) in breast carcinoma cells and its potential modulation of the tamoxifen effect. 7-KC effects were studied in two estrogen receptor (ER)-positive (MCF-7 and T47D) and one ER-negative (BT-20) breast cancer cell lines. First, we tested the viability of cells in the presence of 7-KC. Next, we co-incubated cells with tamoxifen and sublethal concentrations of 7-KC. We also tested changes in caspase 3/7 activity, deregulation of the cell cycle, and changes in expression of selected genes/proteins in the presence of tamoxifen, 7-KC, or their combination. Finally, we analyzed the effect of 7-KC on cellular migration and invasion. We found that the presence of 7-KC slightly decreases the efficacy of tamoxifen in MCF-7 cells, while an increased effect of tamoxifen and higher caspase 3/7 activity was observed in the BT-20 cell line. In the T47D cell line, we did not find any modulation of tamoxifen efficacy by the presence of 7-KC. Expression analysis showed the deregulation in CYP1A1 and CYP1B1 with the opposite trend in MCF-7 and BT-20 cells. Moreover, 7-KC increased cellular migration and invasion potential regardless of the ER status. This study shows that 7-KC can modulate tamoxifen efficacy as well as cellular migration and invasion, making 7-KC a promising candidate for future studies.
- Keywords
- 7-ketocholesterol, Breast cancer, Migration, Proliferation, Tamoxifen,
- MeSH
- Drug Resistance, Neoplasm MeSH
- Antineoplastic Agents, Hormonal pharmacology MeSH
- Caspase 3 genetics MeSH
- Humans MeSH
- MCF-7 Cells MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms * drug therapy MeSH
- Cell Proliferation MeSH
- Receptors, Estrogen metabolism MeSH
- Tamoxifen * pharmacology MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 7-ketocholesterol MeSH Browser
- Antineoplastic Agents, Hormonal MeSH
- Caspase 3 MeSH
- Receptors, Estrogen MeSH
- Tamoxifen * MeSH