Heterothermic insectivorous bats are supposed to experience differential adverse effects of insecticidal pollutants depending on their seasonal and/or daily variation of metabolic and detoxification rates. Here, we investigated effects of imidacloprid, cypermethrin and fipronil on Nyctalus noctula bat-derived hepatocytes through cytotoxicity, cell inhibition and death at different concentrations (0.01, 0.1, 1, 10, 100, 1000 μg/ml), exposure times (10, 24, 48 hrs), incubation temperatures simulating hibernation (8 °C), daily torpor (20 °C), normothermy (37 °C) and active flight (40 °C), and cytochrome P450 addition. Toxic effects were significantly influenced by temperature (p < 0.05), with strong cytotoxicity after 10 hour exposure to fipronil or cypermethrin at 37 and 40 °C, cell replication inhibition (all insecticides at 8 °C) and cellular stimulation, with slight culture proliferation after 48 hours (all insecticides at 40 °C). Replacing protected chiropterans with cell cultures is a way to assess and extrapolate risks of insecticides for bats.
- Klíčová slova
- Cypermethrin, Environmental pollution, Fipronil, Imidacloprid, Nyctalus noctula,
- MeSH
- Chiroptera * MeSH
- dusíkaté sloučeniny * toxicita MeSH
- hepatocyty * účinky léků MeSH
- insekticidy * toxicita MeSH
- kultivované buňky MeSH
- neonikotinoidy * toxicita MeSH
- pyrazoly * toxicita MeSH
- pyrethriny * toxicita MeSH
- teplota * MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cypermethrin MeSH Prohlížeč
- dusíkaté sloučeniny * MeSH
- fipronil MeSH Prohlížeč
- imidacloprid MeSH Prohlížeč
- insekticidy * MeSH
- neonikotinoidy * MeSH
- pyrazoly * MeSH
- pyrethriny * MeSH
Acetamiprid is the only neonicotinoid registered in the European Union because the risks of neonicotinoids to honey bees and other pollinators are strictly regulated. Herein, we orally exposed honey bee colonies to sublethal concentrations of acetamiprid (20 μg/L) under isolated conditions. After one month of continuous exposure, the emerging bees and queens were collected and analyzed via high-throughput label-free quantitative proteomics using a data-independent acquisition strategy. Six and 34 significantly differentially expressed proteins (DEPs) were identified in the emerging bees and queens, respectively. Mrjp3 was the only DEP found in both sample types/castes, and its opposite regulation illustrated a differential response. The DEPs in the emerging bees (H/ACA RNP, Rap1GAP, Mrjp3, and JHE) suggested that sublethal exposure to acetamiprid affected cell cycle-related signaling, which may affect the life history of workers in the colony. The DEPs with increased levels in queens, such as Mrjps 1-4 and 6-7, hymenoptaecin, and apidaecin 22, indicated an activated immune response. Additionally, the level of farnesyl pyrophosphate synthase (FPPS), which is essential for the mevalonate pathway and juvenile hormone biosynthesis, was significantly decreased in queens. The impaired utilization of juvenile hormone in queens supported the identification of additional DEPs. Furthermore, the proteome changes suggested the existence of increased neonicotinoid detoxification by UDP-glucuronosyltransferase and increased amino acid metabolism. The results suggest that the continuous exposure of bee colonies to acetamiprid at low doses (nanograms per gram in feed) may pose a threat to the colonies. The different exposure routes and durations for the emerging bees and queens in our experiment must be considered, i.e., the emerging bees were exposed as larvae via feeding royal jelly and beebread provided by workers (nurse bees), whereas the queens were fed royal jelly throughout the experiment. The biological consequences of the proteomic changes resulting from sublethal/chronic exposure require future determination.
- Klíčová slova
- Acetamiprid, Apis mellifera, Chronic exposure, Insecticide, Pesticide risk assessment,
- MeSH
- insekticidy toxicita MeSH
- juvenilní hormony * MeSH
- neonikotinoidy * toxicita MeSH
- proteomika MeSH
- signální transdukce účinky léků MeSH
- včely účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetamiprid MeSH Prohlížeč
- insekticidy MeSH
- juvenilní hormony * MeSH
- neonikotinoidy * MeSH
The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.
- MeSH
- brouci * účinky léků MeSH
- dursban * farmakologie MeSH
- insekticidy * farmakologie MeSH
- larva účinky léků MeSH
- neonikotinoidy * farmakologie MeSH
- nitrily farmakologie MeSH
- pyrethriny farmakologie MeSH
- rezistence k insekticidům * MeSH
- Solanum tuberosum parazitologie MeSH
- thiamethoxam MeSH
- thiaziny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cyhalothrin MeSH Prohlížeč
- dursban * MeSH
- insekticidy * MeSH
- neonikotinoidy * MeSH
- nitrily MeSH
- pyrethriny MeSH
- thiacloprid MeSH Prohlížeč
- thiamethoxam MeSH
- thiaziny * MeSH
The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.
- Klíčová slova
- Dinotefuran, Ecotoxicity, Mitigation strategies, Neonicotinoid insecticides, Non-target organisms,
- MeSH
- dusíkaté sloučeniny toxicita MeSH
- ekosystém MeSH
- guanidiny * MeSH
- hmyz MeSH
- insekticidy * toxicita MeSH
- neonikotinoidy toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- dinotefuran MeSH Prohlížeč
- dusíkaté sloučeniny MeSH
- guanidiny * MeSH
- insekticidy * MeSH
- neonikotinoidy MeSH
A challenge in bee protection is to assess the risks of pesticide-pathogen interactions. Lotmaria passim, a ubiquitous unicellular parasite in honey bees, is considered harmful under specific conditions. Imidacloprid causes unpredictable side effects. Research indicates that both L. passim and imidacloprid may affect the physiology, behavior, immunity, microbiome and lifespan of honey bees. We designed cage experiments to test whether the infection of L. passim is affected by a sublethal dose of imidacloprid. Workers collected at the time of emergence were exposed to L. passim and 2.5 μg/L imidacloprid in the coexposure treatment group. First, samples of bees were taken from cages since they were 5 days old and 3 days postinfection, i.e., after finishing an artificial 24 h L. passim infection. Additional bees were collected every two additional days. In addition, bees frozen at the time of emergence and collected from the unexposed group were analyzed. Abdomens were analyzed using qPCR to determine parasite load, while corresponding selected heads were subjected to a label-free proteomic analysis. Our results show that bees are free of L. passim at the time of emergence. Furthermore, imidacloprid considerably increased the prevalence as well as parasite loads in individual bees. This means that imidacloprid facilitates infection, enabling faster parasite spread in a colony and potentially to surrounding colonies. The proteomic analysis of bee heads showed that imidacloprid neutralized the increased transferrin 1 expression by L. passim. Importantly, this promising marker has been previously observed to be upregulated by infections, including gut parasites. This study contributes to understanding the side effects of imidacloprid and demonstrates that a single xenobiotic/pesticide compound can interact with the gut parasite. Our methodology can be used to assess the effects of different compounds on L. passim.
- Klíčová slova
- Apis mellifera, Insecticide, Pollinator, Sublethal effect, Synergistic effect, Transferrin 1 precursor,
- MeSH
- dusíkaté sloučeniny toxicita MeSH
- insekticidy * toxicita MeSH
- neonikotinoidy toxicita MeSH
- paraziti * MeSH
- pesticidy * MeSH
- prevalence MeSH
- proteomika MeSH
- Trypanosomatina * parazitologie MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusíkaté sloučeniny MeSH
- imidacloprid MeSH Prohlížeč
- insekticidy * MeSH
- neonikotinoidy MeSH
- pesticidy * MeSH
Neonicotinoids are increasingly and widely used systemic insecticides in agriculture, residential applications, and elsewhere. These pesticides can sometimes occur in small water bodies in exceptionally high concentrations, leading to downstream non-target aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other aquatic invertebrates may also be affected. Most existing studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates at the community level. To address this data gap and explore community-level effects, we performed an outdoor mesocosm experiment that tested the effect of a mixture of three common neonicotinoids (formulated imidacloprid, clothianidin and thiamethoxam) on an aquatic invertebrate community. Exposure to the neonicotinoid mixture induced a top-down cascading effect on insect predators and zooplankton, ultimately increasing phytoplankton. Our results highlight complexities of mixture toxicity occurring in the environment that may be underestimated with traditional mono-specific toxicological approaches.
- Klíčová slova
- Aquatic invertebrates, Community-levels, Mixture, Neonicotinoid insecticides, Trophic interactions,
- MeSH
- bezobratlí MeSH
- chemické látky znečišťující vodu * analýza MeSH
- dusíkaté sloučeniny toxicita MeSH
- insekticidy * analýza MeSH
- neonikotinoidy toxicita MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- dusíkaté sloučeniny MeSH
- insekticidy * MeSH
- neonikotinoidy MeSH
Ants are key ecosystem service providers and can serve as important biological control agents in pest management. However, the effects of insecticides on common farmland ant species are poorly understood. We tested the effects of three commonly used insecticides on ants (Hymenoptera, Formicidae). The tested insecticides were acetamiprid (neonicotinoid; formulated as Mospilan 20 SP), deltamethrin (pyrethroid; formulated as Sanium Ultra), and sulfoxaflor (sulfilimine; formulated as Gondola). We tested two ant (Hymenoptera: Formicidae) species with different colony founding strategies, Lasius niger (Linnaeus, 1758) and Myrmica rubra (Linnaeus, 1758). We sprayed their queens with insecticides at concentrations recommended for use in foliar applications in agriculture, i.e., at 1.25 g L-1 (acetamiprid), 0.6 g L-1 (sulfoxaflor), and 0.875 g L-1 (deltamethrin). Further, we diluted the compounds in distilled water and tested them at 10%, 1%, and 0.1% of the field-recommended concentrations, and used distilled water as a control. We monitored the survival of the queens and the number of eggs laid. All three tested insecticides caused severe lethal and sublethal concentration-dependent effects. Even at concentrations three orders of magnitudes lower than recommended for field applications, significantly lower numbers of eggs were found in the queens' nests. The extent of the sublethal effects of acetamiprid and sulfoxaflor was concentration-dependent and differed between the two ant species. Besides bees and bumblebees, ants represent an important group of hymenopterans that are severely affected even by low concentrations of the tested compounds and therefore should be included in risk assessment schemes.
- MeSH
- ekosystém MeSH
- Formicidae * MeSH
- insekticidy * toxicita MeSH
- neonikotinoidy toxicita MeSH
- včely MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetamiprid MeSH Prohlížeč
- decamethrin MeSH Prohlížeč
- insekticidy * MeSH
- neonikotinoidy MeSH
- sulfoxaflor MeSH Prohlížeč
- voda MeSH
BACKGROUND: Pesticides are identified as one of the major reasons for the global pollinator decline. However, the sublethal effects of pesticide residue levels found in pollen and nectar on pollinators have been studied little. The aim of our research was to study whether oral exposure to the thiacloprid levels found in pollen and nectar affect the learning and long-term memory of bumble bees. We tested the effects of two exposure levels of thiacloprid-based pesticide (Calypso SC480) on buff-tailed bumble bee (Bombus terrestris) in laboratory utilizing a learning performance and memory tasks designed to be difficult enough to reveal large variations across the individuals. RESULTS: The lower exposure level of the thiacloprid-based pesticide impaired the bees' learning performance but not long-term memory compared to the untreated controls. The higher exposure level caused severe acute symptoms, due to which we were not able to test the learning and memory. CONCLUSIONS: Our results show that oral exposure to a thiacloprid-based pesticide, calculated based on residue levels found in pollen and nectar, not only causes sublethal effects but also acute lethal effects on bumble bees. Our study underlines an urgent demand for better understanding of pesticide residues in the environment, and of the effects of those residue levels on pollinators. These findings fill the gap in the existing knowledge and help the scientific community and policymakers to enhance the sustainable use of pesticides.
- Klíčová slova
- Associative learning, Bombus terrestris, Bumble bee, Insecticide exposure, Neonicotinoids, Pollinator, Sublethal effects,
- MeSH
- kognice MeSH
- neonikotinoidy MeSH
- pesticidy * MeSH
- rezidua pesticidů * MeSH
- rostlinný nektar MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- neonikotinoidy MeSH
- pesticidy * MeSH
- rezidua pesticidů * MeSH
- rostlinný nektar MeSH
- thiacloprid MeSH Prohlížeč
Despite several restrictions to their use, neonicotinoid insecticides are still widely employed worldwide. Residual sub-lethal amounts of these chemicals can have detrimental effects on the behavior of non-target insects. Toxic effects on economically important species such as bees have been widely documented, but less is known about their toxic action on other social insects, such as ants. In this study, we assessed the effect of different sub-lethal doses of the neonicotinoid imidacloprid on the ability of colonies of the invasive ant Lasius neglectus to select the most profitable resource. We used Y-shaped mazes having an imidacloprid-polluted or an unpolluted sucrose solution on the two branches. Two sucrose (0.1 M, 0.5 M) and two imidacloprid (1 μg/ml, 10 μg/ml) concentrations were used. In parallel, we evaluated the marking activity of foragers who fed on the same solutions. We found that the 0.1 M sugar solution polluted with 1 μg/ml imidacloprid was significantly more frequently selected in binary choices experiments than the unpolluted resource. Moreover, the ingestion of the same combination of sugar and imidacloprid significantly increased the marking rate of foragers. The higher concentration of the pollutant had lower effects, probably because of the hormesis phenomenon. Results suggest that the lower sub-lethal dose of imidacloprid can lead ants to select again the polluted resource. This "active" selection of the pollutant may magnify the negative effects on the colonies. Due to their ecological role, any impairment of ant survival or behavior may have detrimental cascade effects on the whole ecosystem.
- Klíčová slova
- Ants, Binary choice, Invasive species, Neonicotinoids, Resource selection, Symmetry breaking,
- MeSH
- dusíkaté sloučeniny toxicita MeSH
- ekosystém MeSH
- Formicidae * MeSH
- insekticidy * toxicita MeSH
- neonikotinoidy farmakologie MeSH
- preference v jídle MeSH
- sacharidy MeSH
- sacharosa MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusíkaté sloučeniny MeSH
- imidacloprid MeSH Prohlížeč
- insekticidy * MeSH
- neonikotinoidy MeSH
- sacharidy MeSH
- sacharosa MeSH
Neonicotinoid insecticides represent nearly a quarter of the global insecticide market and are widely used in agriculture but also for lawn, garden care, and pest control. They are highly water-soluble, persistent in soil, may enter the aquatic compartment via spray drift, runoff, or leaching, and contribute to downstream aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other groups, such as crustaceans, may also be affected. Furthermore, most studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates. The present study was designed to test potential toxicological effects of an environmentally relevant mixture of imidacloprid, clothianidin, and thiamethoxam on populations of Ceriodaphnia dubia and Daphnia magna under controlled conditions. Chronic toxicity tests were conducted in the laboratory, and survival and reproduction were measured for both species under environmentally relevant, 'worst-case' concentrations for each compound separately and in combination as pesticides are often detected as mixtures in aquatic environments. The neonicotinoids did not appear to affect the survival of C. dubia and D. magna. Reproduction of C. dubia was affected by the mixture whereas all three individual insecticides as well as the mixture caused a significant reduction in the reproduction of D. magna. Our results highlight the complexity of pesticide toxicity and show that traditional toxicological approaches such as, acute mortality studies and tests with single compounds can underestimate negative impacts that occur in the environment.
- Klíčová slova
- Aquatic invertebrates, Mixture, Neonicotinoids, Sublethal effects,
- MeSH
- chemické látky znečišťující vodu * toxicita MeSH
- Cladocera * MeSH
- Daphnia MeSH
- dusíkaté sloučeniny toxicita MeSH
- insekticidy * toxicita MeSH
- neonikotinoidy toxicita MeSH
- thiamethoxam farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- dusíkaté sloučeniny MeSH
- insekticidy * MeSH
- neonikotinoidy MeSH
- thiamethoxam MeSH