Nejvíce citovaný článek - PubMed ID 28663502
Exposure to numerous chemicals disrupts the spiders' locomotion. Spiders, particularly epigeic spiders, are dependent on their locomotory activities to search for prey, hide from their enemies, and perform sexual reproduction and subsequent parental care. Among the best-known compounds that inhibit the locomotion of arthropods are neonicotinoids. Despite spiders are less affected by the neonicotinoids than insects due to the sequence differences in their acetylcholine receptors, they are not resistant to these compounds. We hypothesized that acute exposure to a broad spectrum of neonicotinoids suppresses the traveled distance, mean velocity, and maximum velocity in epigeic spiders. As a model species, we used adults of Pardosa lugubris. We tested commercial formulations of thiamethoxam, acetamiprid, and thiacloprid. We tested each of the neonicotinoids in the maximum and minimum concentrations recommended for foliar applications. We applied them under controlled conditions dorsally by spraying them directly on the spiders or exposing the spiders to the tarsal contact with neonicotinoid residues. Control groups consisted of 31 individuals; treated groups consisted of 10-21 individuals. We found that a broad spectrum of neonicotinoids temporarily suppresses the traveled distance in epigeic spiders. At 1 h after application, all the three tested neonicotinoid insecticides induced declines in the traveled distance, but this effect mostly disappeared when tested at 24 h after the application. The decrease in the traveled distance was associated with substantial temporary decreases in the mean and maximum velocities. Despite differences among modalities, all three insecticides caused multiple adverse effects on the locomotory parameters in any tested concentrations. It remains to test what would be the lowest safe concentration for the chronic exposure to neonicotinoids in epigeic spiders.
- MeSH
- dusíkaté sloučeniny toxicita MeSH
- insekticidy * toxicita MeSH
- lokomoce MeSH
- neonikotinoidy toxicita MeSH
- pavouci * MeSH
- thiamethoxam farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusíkaté sloučeniny MeSH
- insekticidy * MeSH
- neonikotinoidy MeSH
- thiamethoxam MeSH
There is an ongoing unprecedented loss in insects, both in terms of richness and biomass. The usage of pesticides, especially neonicotinoid insecticides, has been widely suggested to be a contributor to this decline. However, the risks of neonicotinoids to natural insect populations have remained largely unknown due to a lack of field-realistic experiments. Here, we used an outdoor experiment to determine effects of field-realistic concentrations of the commonly applied neonicotinoid thiacloprid on the emergence of naturally assembled aquatic insect populations. Following application, all major orders of emerging aquatic insects (Coleoptera, Diptera, Ephemeroptera, Odonata, and Trichoptera) declined strongly in both abundance and biomass. At the highest concentration (10 µg/L), emergence of most orders was nearly absent. Diversity of the most species-rich family, Chironomidae, decreased by 50% at more commonly observed concentrations (1 µg/L) and was generally reduced to a single species at the highest concentration. Our experimental findings thereby showcase a causal link of neonicotinoids and the ongoing insect decline. Given the urgency of the insect decline, our results highlight the need to reconsider the mass usage of neonicotinoids to preserve freshwater insects as well as the life and services depending on them.
- Klíčová slova
- biodiversity, field experiment, insect decline, insecticide, toxicity,
- MeSH
- ekosystém * MeSH
- hmyz * MeSH
- insekticidy * MeSH
- neonikotinoidy * MeSH
- testy toxicity MeSH
- thiaziny * MeSH
- vodní organismy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- insekticidy * MeSH
- neonikotinoidy * MeSH
- thiacloprid MeSH Prohlížeč
- thiaziny * MeSH
Spiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of β-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.
- MeSH
- Drosophila melanogaster účinky léků fyziologie MeSH
- insekticidy toxicita MeSH
- lipidy analýza MeSH
- neonikotinoidy toxicita MeSH
- nutriční stav * MeSH
- pavouci účinky léků fyziologie MeSH
- proteiny členovců metabolismus MeSH
- tělesná hmotnost MeSH
- testy toxicity metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- insekticidy MeSH
- lipidy MeSH
- neonikotinoidy MeSH
- proteiny členovců MeSH
Neonicotinoid insecticides are associated with a decline in the diversity and distribution of bees and wasps (Hymenoptera: Aculeata). The effects of neonicotinoids on the metamorphosis of aculeates have never been addressed in detail; however, recent evidence suggests that neonicotinoids induce wing abnormalities. We hypothesized that the metamorphosis success of bees and wasps differs in response to contact exposure to field-realistic concentrations of neonicotinoid insecticides or in response to combined exposure to neonicotinoid insecticides and benzimidazole fungicides. We treated prepupae of the model crabronid wasp Pemphredon fabricii with field-realistic concentrations of four neonicotinoids, acetamiprid, imidacloprid, thiacloprid and thiamethoxam, and/or with the benzimidazole fungicide thiabendazole. Treatment with acetamiprid or imidacloprid decreased the pupation rates to only 39% and 32%, respectively. Treatment with thiacloprid or thiamethoxam did not affect the pupation rate when applied alone, but the subsequent treatment of thiacloprid- or thiamethoxam-treated prepupae with thiabendazole led to significant decreases in pupation rates. A high concentration of acetamiprid, which severely affected the pupation rates, had moderate effects on metamorphosis into adults, resulting in 53% metamorphosis success (as opposed to 95% metamorphosis success in the water-treated group). However, imidacloprid or thiamethoxam treatment resulted in only 5%-10% metamorphosis success into adults. Overall survival decreased in response to treatment with any of the neonicotinoids or benzimidazoles or their combinations, with extremely low survival (<2%) following combined treatment with imidacloprid and thiabendazole or thiamethoxam and thiabendazole. In conclusion, neonicotinoids alter insect metamorphosis success, which can be further potentiated by their combination with other agrochemicals, such as benzimidazoles.
- MeSH
- biologická proměna účinky léků MeSH
- insekticidy farmakologie MeSH
- kukla růst a vývoj MeSH
- neonikotinoidy farmakologie MeSH
- sršňovití růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- insekticidy MeSH
- neonikotinoidy MeSH
Neonicotinoids are very effective in controlling crop pests but have adverse effects on predators and pollinators. Spiders are less sensitive to neonicotinoids compared to insects because of the different structure of their acetylcholine receptors, the binding targets of neonicotinoids. We tested whether short-term exposure to neonicotinoids affected the predation rate in different densities of prey of spiders and led to their paralysis or eventual death. To examine these effects, we topically exposed dominant epigeic, epiphytic and sheet-weaving farmland spiders to four widely used neonicotinoids (imidacloprid, thiamethoxam, acetamiprid and thiacloprid). We applied the neonicotinoids at concentrations recommended by the manufacturers for spray application under field conditions. Short-term exposure to the formulations of all four tested neonicotinoids had adverse effects on the predation rate of spiders, with imidacloprid (Confidor) associated with the most severe effects on the predation rate and exhibiting partial acute lethality after one hour (15-32%). Acetamiprid also displayed strong sublethal effects, particularly when applied dorsally to Philodromus cespitum. Day-long exposure to dorsally applied acetamiprid or thiacloprid led to paralysis or death of multiple Linyphiidae spp., with the effects particularly prominent in males. To conclude, we provided multiple lines of evidence that short-term exposure to neonicotinoids, which were applied at recommended field concentrations, caused severe health effects or death in multiple families of spiders. Even acetamiprid caused strong effects, despite being subject to less strict regulations in the European Union, compared with those for imidacloprid because of claims of its negligible off-target toxicity.
- MeSH
- dusíkaté sloučeniny farmakologie MeSH
- insekticidy farmakologie MeSH
- neonikotinoidy farmakologie MeSH
- pavouci účinky léků MeSH
- predátorské chování účinky léků MeSH
- thiaziny farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetamiprid MeSH Prohlížeč
- dusíkaté sloučeniny MeSH
- imidacloprid MeSH Prohlížeč
- insekticidy MeSH
- neonikotinoidy MeSH
- thiacloprid MeSH Prohlížeč
- thiaziny MeSH