In this paper, we present a novel polylactic-acid/flax-composite substrate and the implementation of a demonstrator: a microcontroller board based on commercial design. The substrate is developed for printed circuit board (PCB) applications. The pre-preg is biodegradable, reinforced, and flame-retarded. The novel material was developed to counter the increasing amount of e-waste and to improve the sustainability of the microelectronics sector. The motivation was to present a working circuit in commercial complexity that can be implemented on a rigid substrate made of natural, bio-based materials with a structure very similar to the widely used Flame Retardant Class 4 (FR4) substrate at an early technological readiness level (2-3). The circuit design is based on the Arduino Nano open-source microcontroller board design so that the demonstration could be programmable and easy to fit into education, IoT applications, and embedded designs. During the work, the design was optimized at the level of layout. The copper-clad pre-preg was then prepared and processed with subtractive printed wiring technology and through hole plating. The traditional surface mounting methodology was applied for assembly. The resulting yield of PCB production was around 50%. Signal analysis was successful with analogue data acquisition (voltage) and low-frequency (4 kHz) tests, indistinguishable from sample FR4 boards. Eventually, the samples were subjected to highly accelerated stress test (HAST). HAST tests revealed limitations compared to traditional FR4 printed circuit materials. After six cycles, the weight loss was around 30% in the case of PLA/Flax, and as three-point bending tests showed, the possible ultimate strength (25 MPa at a flexural state) was reduced by 80%. Finally, the sustainability aspect was assessed, where we found that ∼95 vol% and ∼90 wt% of the traditional substrate can be substituted, significantly easing the load of waste on the environment.
- Keywords
- Arduino Nano, PCB, PLA composite, biodegradable, commercial electronics, educational electronics, single-board microcontroller,
- Publication type
- Journal Article MeSH
Temperature transducers are commonly used to monitor process parameters that are controlled by various types of industrial controllers. The purpose of this study is to design and model a simple microcontroller-based acoustic temperature transducer based on the variations of resonance conditions in a cylindrical resonance tube. The transducer's operation is based on the generation of an acoustic standing wave in the free resonance mode of generation within a cylindrical resonance tube which is converted into a train of pulses using Schmitt trigger circuit. The frequency of the generated standing wave (i.e., the train of pulses) is measured by the Arduino Uno microcontroller, where a digital pin is used to acquire pulses that are counted using a build-in software function in an Arduino IDE environment. Experimental results are performed for three sizes of diameters to investigate the effect of the diameter of resonance tube on the obtained results. The maximum nonlinearity error according to Full-Scale Deflection (FSD) is about 2.3 percent, and the relative error of the transducer is evaluated using experimental findings and the regression model. The circuit simplicity and design of the suggested transducer, as well as the linearity of its measurements, are notable.
- Keywords
- Arduino Uno, acoustic resonance, standing wave, temperature measurement,
- MeSH
- Acoustics * MeSH
- Transducers MeSH
- Temperature MeSH
- Vibration MeSH
- Sound * MeSH
- Publication type
- Journal Article MeSH
As part of our research for microcontroller software support, we have developed a modular framework that utilizes previously unimplemented architectural principles for developing applications on microcontrollers. These principles are still a privilege of enterprise and server applications. The paper describes the benefits of a new architectural approach to developing applications on microcontrollers and describes the most common application scenarios along with examples of IoT application development using a framework with design pattern architecture and SOLID principles. As a result, our framework supports developers in creating robust, adaptive, and scalable applications. It emphasizes a modular and clean design that increases development efficiency and enables easy deployment of new features or integration of new technologies, such as new types of sensors, upgraded development boards, or improved development tools and frameworks. The architectural concepts offered useful guidance for creating applications ready for future challenges and changing technology environments, especially in the IoT area.
- Keywords
- ESP32, IoT, SOLID, design pattern, framework, microcontroller, programming, sensor,
- Publication type
- Journal Article MeSH
We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment.
- Publication type
- Journal Article MeSH
This article focuses on the area of software development for microcontrollers and details the implementation of modern programming practices and principles in embedded systems and IoT applications. This article explains how we implemented previously unimplemented principles and applied design patterns for quality software design on microcontrollers, which are currently only used for developing applications on the higher layers of the IoT reference model. A custom modular framework for microcontrollers is presented, based on applying SOLID principles and adapting design patterns specific to the microcontrollers' application development needs. The implemented framework enables independent communication between modules and flexible integration of hardware components. It is designed with platform independence in mind, contributing to its wide adaptability and ease of use in diverse development environments. By applying these technological approaches, we can create applications that are not only testable and extensible in terms of application logic but also allow for easy adaptation to changes in these hardware resources. Utilizing these capabilities represents an innovative approach to development for microcontrollers that fundamentally improves the long-term sustainability and scalability of applications.
- Keywords
- IoT, SOLID, design pattern, framework, microcontroller, programming,
- Publication type
- Journal Article MeSH
Exhaled breath condensate (EBC) is an attractive, non-invasive sample for clinical diagnostics. During EBC collection, its composition is influenced by the collection temperature, a factor that is often not thoroughly monitored and controlled. In this study, we assembled a novel, simple, portable, and inexpensive device for EBC collection, able to maintain a stable temperature at any value between -7 °C and +12 °C. The temperature was controlled using a microcontroller and a thermoelectric cooler that was employed to cool the aluminum block holding the glass tube or the polypropylene syringe. The performance of the novel sampler was compared with the passively cooled RTube™ and a simple EBC sampler, in which the temperature was steadily increasing during sampling. The developed sampler was able to maintain a stable temperature within ±1 °C. To investigate the influence of different sampling temperatures (i.e., +12, -7, -80 °C) on the analyte content in EBC, inorganic ions and organic acids were analyzed by capillary electrophoresis with a capacitively coupled contactless conductivity detector. It was shown that the concentration of metabolites decreased significantly with decreasing temperature. The portability and the ability to keep a stable temperature during EBC sampling makes the developed sampler suitable for point-of-care diagnostics.
- Keywords
- Arduino, Capillary electrophoresis, Collection device, Exhaled breath condensate, Ion analysis, Temperature control,
- MeSH
- Biomarkers MeSH
- Breath Tests * MeSH
- Electrophoresis, Capillary MeSH
- Point-of-Care Testing MeSH
- Temperature MeSH
- Exhalation * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
Colorimetry is a widely used technique for optical detection in point-of-care testing and on-site detection. Although some studies employ a multiplex approach to analyse coloured solutions, many still analyse one sample at a time. We have prepared a simple and affordable colorimetric assay based on a TCS34725 colour sensor (ams-OSRAM) integrated into an M5Stack module and an RGB LED module both inserted into a 3D printed frame. We found that the colorimetric assay can be easily transferred to a colour sensing platform, and the signal range obtained using the prepared colorimeter is more than 200 times larger than that obtained using digital image colorimetry (DIC) for the same samples containing cholinesterase or urease as a model enzyme providing a change in pH of the processed solution. The assay appears to be ready for practical use.
- MeSH
- Colorimetry * instrumentation methods MeSH
- Hydrogen-Ion Concentration MeSH
- Urease chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Urease MeSH
The article describes the use of embedded systems in the Industrial Internet of Things and its benefits for industrial robots. For this purpose, the article presents a case study, which deals with an embedded system using an advanced microcontroller designed to be placed directly on the robot. The proposed system is being used to collect information about industrial robot parameters that impact its behavior and its long-term condition. The device measures the robot's surroundings parameters and its vibrations while working. Besides that, it also has an enormous potential to collect other parameters such as air pollution or humidity. The collected data are stored on the cloud platform and processed and analysed. The embedded system proposed in this article is conceived to be small and mobile, as it is a wireless system that can be easily applied to any industrial robot.
- Keywords
- ESP32, Internet of Robotic Things, Internet of Things, MQTT, Nicla, Thingworx, embedded systems, microcontroller, smart sensors,
- Publication type
- Journal Article MeSH
The review focuses on the design of detection cells, the use of microcontrollers for processing and evaluation of the detection signal, and the development of multi-detection systems for electromigration, liquid chromatography, flow-through and microfluidic techniques. A separate section is the introduction of modern 3D printing techniques and the use of new printing materials for the design of multidetection systems. In addition to traditional utilisation in separation techniques, new versions of contactless conductivity detectors are finding applications in FIA, SIA, portable and paper based analytical systems or as independent sensors. Applicationwise, C4Ds find new use in gas detection, segmented flow monitoring, as part of point of care devices, and in many other biomedical, environmental, agricultural and industrial applications.
- Keywords
- 3D printing, Capillary electrophoresis, Contactless conductivity detection, Microcontroller, Microfluidics, Sensor,
- Publication type
- Journal Article MeSH
- Review MeSH
We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.
- Publication type
- Journal Article MeSH