optimal partitioning theory Dotaz Zobrazit nápovědu
BACKGROUND AND AIMS: Understanding biomass allocation among plant organs is crucial for comprehending plant growth optimization, survival and responses to the drivers of global change. Yet, the mechanisms governing mass allocation in vascular plants from extreme elevations exposed to cold and drought stresses remain poorly understood. METHODOLOGY: We analysed organ mass weights and fractions in 258 Himalayan herbaceous species across diverse habitats (wetland, steppe, alpine), growth forms (annual, perennial taprooted, rhizomatous and cushiony) and climatic gradients (3500-6150 m elevation) to explore whether biomass distribution adhered to fixed allometric or optimal partitioning rules, and how variations in size, phylogeny and ecological preferences influence their strategies for resource allocation. KEY FINDINGS: Following optimal partitioning theory, Himalayan plants distribute more biomass to key organs vital for acquiring and preserving limited resources necessary for their growth and survival. Allocation strategies are mainly influenced by plant growth forms and habitat conditions, notably temperature, water availability and evaporative demands. Alpine plants invest primarily in below-ground stem bases for storage and regeneration, reducing above-ground stems while increasing leaf mass fraction to maximize carbon assimilation in their short growing season. Conversely, arid steppe plants prioritize deep roots over leaves to secure water and minimize transpiration. Wetland plants allocate resources to above-ground stems and below-ground rhizomes, enabling them to resist competition and grazing in fertile environments. CONCLUSIONS: Himalayan plants from extreme elevations optimize their allocation strategies to acquire scarce resources under specific conditions, efficiently investing carbon from supportive to acquisitive and protective functions with increasing cold and drought. Intraspecific variation and shared ancestry have not significantly altered biomass allocation strategies of Himalayan plants. Despite diverse evolutionary histories, plants from similar habitats have developed comparable phenotypic structures to adapt to their specific environments. This study offers new insights into plant adaptations in diverse Himalayan environments and underscores the importance of efficient resource allocation for survival and growth in challenging conditions.
- Klíčová slova
- Biomass allocation, Himalayas, allometric partitioning theory, environmental gradients, optimal partitioning theory, phylogeny,
- MeSH
- biomasa * MeSH
- ekosystém MeSH
- fyziologická adaptace * MeSH
- Magnoliopsida * fyziologie růst a vývoj MeSH
- nízká teplota * MeSH
- období sucha * MeSH
- Publikační typ
- časopisecké články MeSH
We present an extension of the Martini coarse-grained force field to glycolipids. The glycolipids considered here are the glycoglycerolipids monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), and phosphatidylinositol (PI) and its phosphorylated forms (PIP, PIP2), as well as the glycosphingolipids galactosylceramide (GCER) and monosialotetrahexosylganglioside (GM1). The parametrization follows the same philosophy as was used previously for lipids, proteins, and carbohydrates focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar solvents. Bonded parameters are optimized by comparison to lipid conformations sampled with an atomistic force field, in particular with respect to the representation of the most populated states around the glycosidic linkage. Simulations of coarse-grained glycolipid model membranes show good agreement with atomistic simulations as well as experimental data available, especially concerning structural properties such as electron densities, area per lipid, and membrane thickness. Our coarse-grained model opens the way to large scale simulations of biological processes in which glycolipids are important, including recognition, sorting, and clustering of both external and membrane bound proteins.
- Publikační typ
- časopisecké články MeSH
Physical mechanisms of phase separation in living systems play key physiological roles and have recently been the focus of intensive studies. The strongly heterogeneous nature of such phenomena poses difficult modeling challenges that require going beyond mean-field approaches based on postulating a free energy landscape. The pathway we take here is to calculate the partition function starting from microscopic interactions by means of cavity methods, based on a tree approximation for the interaction graph. We illustrate them on the binary case and then apply them successfully to ternary systems, in which simpler one-factor approximations are proved inadequate. We demonstrate the agreement with lattice simulations and contrast our theory with coacervation experiments of associative de-mixing of nucleotides and poly-lysine. Different types of evidence are provided to support cavity methods as ideal tools for modeling biomolecular condensation, giving an optimal balance between the consideration of spatial aspects and fast computational results.
- Klíčová slova
- Molecular interaction, Statistical mechanics, Statistical physics,
- Publikační typ
- časopisecké články MeSH
This paper focuses on wrapper-based feature selection for a 1-nearest neighbor classifier. We consider in particular the case of a small sample size with a few hundred instances, which is common in biomedical applications. We propose a technique for calculating the complete bootstrap for a 1-nearest-neighbor classifier (i.e., averaging over all desired test/train partitions of the data). The complete bootstrap and the complete cross-validation error estimate with lower variance are applied as novel selection criteria and are compared with the standard bootstrap and cross-validation in combination with three optimization techniques - sequential forward selection (SFS), binary particle swarm optimization (BPSO) and simplified social impact theory based optimization (SSITO). The experimental comparison based on ten datasets draws the following conclusions: for all three search methods examined here, the complete criteria are a significantly better choice than standard 2-fold cross-validation, 10-fold cross-validation and bootstrap with 50 trials irrespective of the selected output number of iterations. All the complete criterion-based 1NN wrappers with SFS search performed better than the widely-used FILTER and SIMBA methods. We also demonstrate the benefits and properties of our approaches on an important and novel real-world application of automatic detection of the subthalamic nucleus.
- MeSH
- teoretické modely MeSH
- velikost vzorku * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Conformational effects on the σ-electron delocalization in oligosilanes are addressed by Hartree-Fock and time-dependent density functional theory calculations (B3LYP, 6-311G**) at MP2 optimized geometries of permethylated uniformly helical linear oligosilanes (all-ω-Sin R2n+2 ) up to n=16 and for backbone dihedral angles ω=55-180°. The extent of σ delocalization is judged by the partition ratio of the highest occupied molecular orbital and is reflected in the dependence of its shape and energy and of UV absorption spectra on n. The results agree with known spectra of all-transoid loose-helix conformers (all-[±165]-Sin Me2n+2 ) and reveal a transition at ω≈90° from the "σ-delocalized" limit at ω=180° toward and close to the physically non-realizable "σ-localized" tight-helix limit ω=0 with entirely different properties. The distinction is also obtained in the Hückel Ladder H and C models of σ delocalization. An easy intuitive way to understand the origin of the two contrasting limits is to first view the linear chain as two subchains with alternating primary and vicinal interactions (σ hyperconjugation), one consisting of the odd and the other of the even σ(SiSi) bonds, and then allow the two subchains to interact by geminal interactions (σ conjugation).
- Klíčová slova
- electron delocalization, electron localization, electronic states, oligosilanes, sigma conjugation,
- Publikační typ
- časopisecké články MeSH