quasi-static and dynamic experimental tests
Dotaz
Zobrazit nápovědu
Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.
- Klíčová slova
- LLDPE, constitutive material model, impact energy absorption, material parameter identification, quasi-static and dynamic experimental tests, simulation, validation,
- Publikační typ
- časopisecké články MeSH
This contribution gives basic information about the mechanical behavior of the facial part of the human skull cranium, i.e., the splanchnocranium, associated with external loads and injuries caused mainly by brachial violence. The main areas suffering from such violence include the orbit, frontal, and zygomatic bones. In this paper, as a first approach, brachial violence was simulated via quasi-static compression laboratory tests, in which cadaveric skulls were subjected to a load in a testing machine, increasing till fractures occurred. The test skulls were also used for research into the dynamic behavior, in which experimental and numerical analyses were performed. A relatively high variability in forces inducing the fractures has been observed (143-1403 N). The results lay the basis for applications mainly in forensic science, surgery, and ophthalmology.
- Klíčová slova
- biomechanics, dynamic loading, experiment, forensic science, fracture, modal analysis, orbital, splanchnocranium, static loading, traumatology,
- Publikační typ
- časopisecké články MeSH