response traits Dotaz Zobrazit nápovědu
Functional trait approaches are common in ecology, but a lack of clear hypotheses on how traits relate to environmental gradients (i.e., trait-niche relationships) often makes uncovering mechanisms difficult. Furthermore, measures of community functional structure differ in their implications, yet inferences are seldom compared among metrics. Community-weighted mean trait values (CWMs), a common measure, are largely driven by the most common species and thus do not reflect community-wide trait-niche relationships per se. Alternatively, trait-niche relationships can be estimated across a larger group of species using hierarchical joint species distribution models (JSDMs), quantified by a parameter Γ. We investigated how inferences about trait-niche relationships are affected by the choice of metric. Using deadwood-dependent (saproxylic) beetles in fragmented Finnish forests, we followed a protocol for investigating trait-niche relationships by (1) identifying environmental filters (climate, forest age, and deadwood volume), (2) relating these to an ecological function (dispersal ability), and (3) identifying traits related to this function (wing morphology). We tested 18 hypothesized dispersal relationships using both CWM and Γ estimates across these environmental gradients. CWMs were more likely than Γ to show support for trait-niche relationships. Up to 13% of species' realized niches were explained by dispersal traits, but the directions of effects were consistent with fewer than 11%-39% of our 18 trait-niche hypotheses (depending on the metric used). This highlights the difficulty in connecting morphological traits and ecological functions in insects, despite the clear conceptual link between landscape connectivity and flight-related traits. Caution is thus warranted in hypothesis development, particularly where apparent trait-function links are less clear. Inferences differ when CWMs versus Γ estimates are used, necessitating the choice of a metric that reflects study questions. CWMs help explain the effects of environmental gradients on community trait composition, whereas the effects of traits on species' niches are better estimated using hierarchical JSDMs.
- Klíčová slova
- Bayesian joint species distribution model, community‐weighted mean trait values, deadwood, dispersal capacity, morphological traits, phylogeny, response trait, wing length,
- Publikační typ
- časopisecké články MeSH
Global change influences species' seasonal occurrence, or phenology. In cold-adapted insects, the activity is expected to start earlier with a warming climate, but contradictory evidence exists, and the reactions may be linked to species-specific traits. Using data from the GBIF database, we selected 105 single-brooded Holarctic butterflies inhabiting broad latitudinal ranges. We regressed patterns of an adult flight against latitudes of the records, controlling for altitude and year effects. Species with delayed flight periods towards the high latitudes, or stable flight periods across latitudes, prevailed over those that advanced their flight towards the high latitudes. The responses corresponded with the species' seasonality (flight of early season species was delayed and flight of summer species was advanced at high latitudes) and oceanic vs. continental climatic niches (delays in oceanic, stability in continental species). Future restructuring of butterfly seasonal patterns in high latitudes will reflect climatic niches, and hence the evolutionary history of participating species.
- Klíčová slova
- Climate warming, Lepidoptera, global change, insect seasonality, life-history traits,
- MeSH
- ekologie MeSH
- klimatické změny MeSH
- motýli * MeSH
- nadmořská výška MeSH
- roční období MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- dopisy MeSH
Knowledge of the ability of plants to respond to climate change via phenotypic plasticity or genetic adaptation in ecophysiological traits and of the link of these traits to fitness is still limited. We studied the clonal grass Festuca rubra from 11 localities representing factorially crossed gradients of temperature and precipitation and cultivated them in growth chambers simulating temperature and moisture regime in the four extreme localities. We measured net photosynthetic rate, Fv /Fm , specific leaf area, osmotic potential and stomatal density and length and tested their relationship to proxies of fitness. We found strong phenotypic plasticity in photosynthetic traits and genetic differentiation in stomatal traits. The effects of temperature and moisture interacted (either as conditions of origin or growth chambers), as were effects of growth and origin. The relationships between the ecophysiological and fitness-related traits were significant but weak. Phenotypic plasticity and genetic differentiation of the species indicate the potential ability of F. rubra to adapt to novel climatic conditions. The most important challenge for the plants seems to be increasing moisture exposing plants to hypoxia. However, the plants have the potential to respond to increased moisture by changes in stomatal size and density and adjustments of osmotic potential. Changes in ecophysiological traits translate into variation in plant fitness, but the selection on the traits is relatively weak and depends on actual conditions. Despite the selection, the plants do not show strong local adaptation and local adaptation is thus likely not restricting species ability to adjust to novel conditions.
- MeSH
- fenotyp MeSH
- Festuca * genetika MeSH
- fyziologická adaptace MeSH
- klimatické změny MeSH
- listy rostlin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Introduced organic pollutants in all ecosystem compartments can cause stress resulting in a wide range of responses including different root development. In this study, the effects of a polycyclic aromatic hydrocarbon-fluoranthene (FLT; 0.1, 1 and 7 mg L(-1)) on the growth, morphology and anatomical structure of roots of pea and maize was evaluated. In comparison with pea, significant stimulation of root system growth of maize caused by 0.1 mg L(-1) (total length longer by 25%, number of lateral roots by 35%) and its reduction (total length by 34%) already by 1 mg L(-1) FLT is the proof of different interspecies sensitivity to low and higher environmental loading. Nevertheless in both plant species a high loading 7 mg L(-1) FLT significantly reduced both growth (total length by 95% in pea, 94% in maize) and the number of lateral roots (by 78% in pea, 94% in maize). Significantly increased thickness of root of both maize and pea was caused by 7 mg L(-1) FLT and in maize already by 0.1 mg L(-1) FLT. It may be mainly connected with an enlargement of stele area (up to 50% in pea and 25% in maize). Increased xylem area in root tip (by up to 385% in pea, 167% in maize) and zone of maturation (up to 584% in pea, 70% in maize) and its higher portion in stele area of root tip (by 9% in pea, 21% in maize), mainly in roots exposed 7 mg L(-1) FLT, are a proof of an early differentiation of vascular tissue and a shortening of root elongation zone. Moreover in both plant species exposed to this treatment, the decline of rhizodermis cells and external layers of primary cortex was found and also significant deformation of primordia of lateral roots was recorded.
- MeSH
- fluoreny toxicita MeSH
- fyziologický stres MeSH
- hrách setý anatomie a histologie účinky léků fyziologie MeSH
- kořeny rostlin anatomie a histologie účinky léků fyziologie MeSH
- kukuřice setá anatomie a histologie účinky léků fyziologie MeSH
- látky znečišťující půdu toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluoranthene MeSH Prohlížeč
- fluoreny MeSH
- látky znečišťující půdu MeSH
This study evaluates the response of ground beetle (Coleoptera: Carabidae) assemblage to forest management practices by integrating species composition, body traits, wing morphology and developmental instability. Traditional approaches that rely on averaged identity-based descriptors often overlook phenotypic plasticity and functional trait variability, potentially masking species-specific responses to environmental changes. To address this, we applied a three-layered analytical approach to address this gap, utilising ground beetle occurrence and morphological trait data from Podyjí National Park, Czech Republic. The first layer assessed assemblage composition with ecological and dietary preferences across control, ecotone and clearing treatments using multivariate techniques. Building on species-level knowledge, the second layer analysed the interaction between coarse traits, such as wing morphology and fine-scale body traits, including body size (proxied by elytron length), head width and last abdominal sternite, to assess their relationship with the different treatments. These interactions were explored as intraspecific wing plasticity can affect functional interpretations. The third layer focused on fluctuating asymmetry as an intraindividual indicator of developmental instability, examining how ground beetles respond to environmental stressors. Our findings revealed: (i) no significant impact of habitat treatments on the presence of specialist species in the assemblage analysis; (ii) analysis of morphological traits highlights the combined influence of a coarse trait, such as wing morphology, and a fine trait, such as head width, which together contribute to the partitioning of assemblages and help distinguish differences in habitat use; and (iii) FA analysis revealed a significant positive association between the second antennal segment of specialist species and litter while displaying a negative association with Collembola. This multilevel analytical framework not only confirms ecological findings but also advances our approach to habitat and species analysis, offering deeper insights into ecosystem dynamics.
- Klíčová slova
- Bayesian statistics, fluctuating asymmetry, forest management practises, functional traits, wing morphology,
- Publikační typ
- časopisecké články MeSH
The current ecological crisis has risen extinction rates to similar levels of ancient mass extinctions. However, it seems to not be acting uniformly across all species but affecting species differentially. This suggests that species' susceptibility to the extinction process is mediated by specific traits. Since understanding this response mechanism at large scales will benefit conservation effort around the world, we used the IUCN global threat status and population trends of 8281 extant bird species as proxies of the extinction risk to identify the species-specific traits affecting their susceptibility to extinction within the biogeographic regions and at the global scale. Using linear mixed effect models and multinomial models, we related the global threat status and the population trends with the following traits: migratory strategy, habitat and diet specialization, body size, and generation length. According to our results and independently of the proxy used, more vulnerable species are sedentary and have larger body size, longer generation time, and higher degree of habitat specialization. These relationships apply globally and show little variation across biogeographic regions. We suggest that such concordant patterns might be caused either by a widespread occurrence of the same threats such as habitat modification or by a uniform capacity of some traits to reflect the impact of different local threats. Regardless of the cause of this pattern, our study identified the traits that affect species' response capability to the current ecological crisis. Conservation effort should focus on the species with trait values indicating the limited response capacity to overcome this crisis.
- Klíčová slova
- Bird species, Ecological crisis, Ecological traits, Extinction risk, Extinction susceptibility, Global scale,
- MeSH
- biodiverzita MeSH
- druhová specificita MeSH
- ekosystém MeSH
- extinkce biologická * MeSH
- klimatické změny * MeSH
- ptáci MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site-years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra- and interspecific trait variation on ecosystem functioning.
- Klíčová slova
- FLUXNET, TRY database, ecosystem functional property, eddy covariance, interannual variability, photosynthetic capacity, plant traits, spatiotemporal variability,
- Publikační typ
- časopisecké články MeSH
- MeSH
- adrenokortikotropní hormon krev MeSH
- dospělí MeSH
- katecholaminy krev MeSH
- lidé MeSH
- neurosekreční systémy metabolismus patofyziologie MeSH
- osobnostní dotazník * MeSH
- psychický stres psychologie MeSH
- tělovýchovné lékařství * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adrenokortikotropní hormon MeSH
- katecholaminy MeSH
BACKGROUND: A statistical pipeline was developed and used for determining candidate genes and candidate gene coexpression networks involved in 2 alcohol (i.e., ethanol [EtOH]) metabolism phenotypes, namely alcohol clearance and acetate area under the curve in a recombinant inbred (RI) (HXB/BXH) rat panel. The approach was also used to provide an indication of how EtOH metabolism can impact the normal function of the identified networks. METHODS: RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH RI rats. The reconstructed transcripts were quantitated, and data were used to construct gene coexpression modules and networks. A separate group of rats, comprising the same 30 strains, were injected with EtOH (2 g/kg) for measurement of blood EtOH and acetate levels. These data were used for quantitative trait loci (QTL) analysis of the rate of EtOH disappearance and circulating acetate levels. The analysis pipeline required calculation of the module eigengene values, the correction of these values with EtOH metabolism rates and acetate levels across the rat strains, and the determination of the eigengene QTLs. For a module to be considered a candidate for determining phenotype, the module eigengene values had to have significant correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the phenotypic QTLs. RESULTS: Of the 658 transcript coexpression modules generated from liver RNA sequencing data, a single module satisfied all criteria for being a candidate for determining the alcohol clearance trait. This module contained 2 alcohol dehydrogenase genes, including the gene whose product was previously shown to be responsible for the majority of alcohol elimination in the rat. This module was also the only module identified as a candidate for influencing circulating acetate levels. This module was also linked to the process of generation and utilization of retinoic acid as related to the autonomous immune response. CONCLUSIONS: We propose that our analytical pipeline can successfully identify genetic regions and transcripts which predispose a particular phenotype and our analysis provides functional context for coexpression module components.
- Klíčová slova
- Alcohol Metabolism, HXB/BXH Recombinant Inbred Rat Panel, Liver, Quantitative Trait Locus Mapping, RNA Sequencing, Weighted Gene Coexpression Network Analysis,
- MeSH
- ethanol aplikace a dávkování metabolismus MeSH
- játra účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- metabolická clearance účinky léků fyziologie MeSH
- multifaktoriální dědičnost účinky léků fyziologie MeSH
- pití alkoholu genetika metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- strojové učení bez učitele * MeSH
- systémová biologie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ethanol MeSH
Difficulty with emotion perception is a core feature of autism spectrum disorder (ASD) that is also associated with the broader autism phenotype. The current study explored the neural underpinnings of conscious and nonconscious perceptions of affect in typically developing individuals with varying levels of autistic-like traits, as measured by the Autism Quotient (AQ). We investigated the relationship between autistic traits and face processing efficiency using event-related potentials (ERPs). In 20 typically developing adults, we utilized ERPs (the P100, N170, and P300) to measure differences in face processing for emotional faces that were presented either (a) too quickly to reach conscious awareness (16 ms) or (b) slowly enough to be consciously observed (200 ms). All individuals evidenced increased P100 and P300 amplitude and shorter N170 latencies for nonconscious versus consciously presented faces. Individuals with high AQ scores evidenced delayed ERP components. Nonconsciously perceived emotional faces elicited enhanced neural responses regardless of AQ score. Higher levels of autistic traits were associated with inefficient face perception (i.e., longer latency of ERP components). This delay parallels processing delays observed in ASD. These data suggest that inefficient social perception is present in individuals with subclinical levels of social impairment.
- Klíčová slova
- Event-related potential, autistic traits, face perception,
- MeSH
- autistická porucha psychologie MeSH
- elektroencefalografie MeSH
- emoce fyziologie MeSH
- evokované potenciály MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek fyziologie MeSH
- neuropsychologické testy MeSH
- osobnost fyziologie MeSH
- rozpoznání obličeje fyziologie MeSH
- sociální percepce MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH