taproot development Dotaz Zobrazit nápovědu
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
- Klíčová slova
- assimilate partitioning, carbohydrate metabolism, developmental regulation, physiological phenotyping, sucrose accumulation, taproot development,
- Publikační typ
- časopisecké články MeSH
Little is known about the effects of nutrient availability on the growth of Trifolium medium in alkaline soil. In 2010, a pot experiment (10 N, P and K fertiliser treatments) with seeding of T. medium into alkaline soil was performed and emergence of seedlings, survival, aboveground and belowground organs were studied. The positive effects of increased nutrient availability on seedling emergence ranged from 5% in the control to 17% in the high P treatment. The lowest mortality was in treatments with P and K supply and the highest in treatments with N supply, due to the sensitivity of young plants to high N availability. The highest values of most measured aboveground plant traits were recorded in treatments with simultaneous application of N, P and K. There were highly positive effects of P supply alone or in combination with N and K on the development of belowground organs. Taproot length ranged from 11.5 in high N to 40.2 cm in P treatment. There was a negative effect of N application on nodulation, especially in N treatments, where growth of T. medium was limited by insufficient P supply. The number of nodules per plant ranged from 0.8 to 4.5 in the high N and P treatments. As demonstrated in this study, T. medium is a potentially suitable legume for alkaline soils. It requires a relatively high P and K supply as well as moderate mineral N supply to achieve its maximum growth potential.
- Klíčová slova
- Flowering, mineral nutrition, phenotypic plasticity, roots, zigzag clover,
- MeSH
- draslík farmakologie MeSH
- dusík farmakologie MeSH
- fosfor farmakologie MeSH
- kořeny rostlin účinky léků fyziologie MeSH
- květy účinky léků fyziologie MeSH
- semenáček účinky léků fyziologie MeSH
- Trifolium účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- dusík MeSH
- fosfor MeSH
BACKGROUND AND AIMS: Understanding biomass allocation among plant organs is crucial for comprehending plant growth optimization, survival and responses to the drivers of global change. Yet, the mechanisms governing mass allocation in vascular plants from extreme elevations exposed to cold and drought stresses remain poorly understood. METHODOLOGY: We analysed organ mass weights and fractions in 258 Himalayan herbaceous species across diverse habitats (wetland, steppe, alpine), growth forms (annual, perennial taprooted, rhizomatous and cushiony) and climatic gradients (3500-6150 m elevation) to explore whether biomass distribution adhered to fixed allometric or optimal partitioning rules, and how variations in size, phylogeny and ecological preferences influence their strategies for resource allocation. KEY FINDINGS: Following optimal partitioning theory, Himalayan plants distribute more biomass to key organs vital for acquiring and preserving limited resources necessary for their growth and survival. Allocation strategies are mainly influenced by plant growth forms and habitat conditions, notably temperature, water availability and evaporative demands. Alpine plants invest primarily in below-ground stem bases for storage and regeneration, reducing above-ground stems while increasing leaf mass fraction to maximize carbon assimilation in their short growing season. Conversely, arid steppe plants prioritize deep roots over leaves to secure water and minimize transpiration. Wetland plants allocate resources to above-ground stems and below-ground rhizomes, enabling them to resist competition and grazing in fertile environments. CONCLUSIONS: Himalayan plants from extreme elevations optimize their allocation strategies to acquire scarce resources under specific conditions, efficiently investing carbon from supportive to acquisitive and protective functions with increasing cold and drought. Intraspecific variation and shared ancestry have not significantly altered biomass allocation strategies of Himalayan plants. Despite diverse evolutionary histories, plants from similar habitats have developed comparable phenotypic structures to adapt to their specific environments. This study offers new insights into plant adaptations in diverse Himalayan environments and underscores the importance of efficient resource allocation for survival and growth in challenging conditions.
- Klíčová slova
- Biomass allocation, Himalayas, allometric partitioning theory, environmental gradients, optimal partitioning theory, phylogeny,
- MeSH
- biomasa * MeSH
- ekosystém MeSH
- fyziologická adaptace * MeSH
- Magnoliopsida * fyziologie růst a vývoj MeSH
- nízká teplota * MeSH
- období sucha * MeSH
- Publikační typ
- časopisecké články MeSH