• Je něco špatně v tomto záznamu ?

Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling

M. Babič, D. Horák, M. Trchová, P. Jendelová, K. Glogarová, P. Lesný, V. Herynek, M. Hájek, E. Syková

. 2008 ; 19 (3) : 740-750.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/bmc10034910

New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide and oxidation of the resulting magnetite with sodium hypochlorite, followed by the addition of poly( L-lysine) (PLL) solution. PLL of several molecular weights ranging from 146 ( L-lysine) to 579 000 was tested as a coating to boost the intracellular uptake of the nanoparticles. The nanoparticles were characterized by TEM, dynamic light scattering, FTIR, and ultrasonic spectrometry. TEM revealed that the particles were ca. 6 nm in diameter, while FTIR showed that their surfaces were well-coated with PLL. The interaction of PLL-modified iron oxide nanoparticles with DMEM culture medium was verified by UV-vis spectroscopy. Rat bone marrow stromal cells (rMSCs) and human mesenchymal stem cells (hMSC) were labeled with PLL-modified iron oxide nanoparticles or with Endorem (control). Optical microscopy and TEM confirmed the presence of PLL-modified iron oxide nanoparticles inside the cells. Cellular uptake was very high (more than 92%) for PLL-modified nanoparticles that were coated with PLL (molecular weight 388 00) at a concentration of 0.02 mg PLL per milliliter of colloid. The cellular uptake of PLL-modified iron oxide was facilitated by its interaction with the negatively charged cell surface and subsequent endosomolytic uptake. The relaxivity of rMSCs labeled with PLL-modified iron oxide and the amount of iron in the cells were determined. PLL-modified iron oxide-labeled rMSCs were imaged in vitro and in vivo after intracerebral grafting into the contralateral hemisphere of the adult rat brain. The implanted cells were visible on magnetic resonance (MR) images as a hypointense area at the injection site and in the lesion. In comparison with Endorem, nanoparticles modified with PLL of an optimum molecular weight demonstrated a higher efficiency of intracellular uptake by MSC cells.

000      
04280naa 2200637 a 4500
001      
bmc10034910
003      
CZ-PrNML
005      
20130129164331.0
008      
101221s2008 xxu e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Babič, Michal $7 xx0109464
245    10
$a Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling / $c M. Babič, D. Horák, M. Trchová, P. Jendelová, K. Glogarová, P. Lesný, V. Herynek, M. Hájek, E. Syková
314    __
$a Institute of Macromolecular Chemistry, v v i, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
520    9_
$a New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide and oxidation of the resulting magnetite with sodium hypochlorite, followed by the addition of poly( L-lysine) (PLL) solution. PLL of several molecular weights ranging from 146 ( L-lysine) to 579 000 was tested as a coating to boost the intracellular uptake of the nanoparticles. The nanoparticles were characterized by TEM, dynamic light scattering, FTIR, and ultrasonic spectrometry. TEM revealed that the particles were ca. 6 nm in diameter, while FTIR showed that their surfaces were well-coated with PLL. The interaction of PLL-modified iron oxide nanoparticles with DMEM culture medium was verified by UV-vis spectroscopy. Rat bone marrow stromal cells (rMSCs) and human mesenchymal stem cells (hMSC) were labeled with PLL-modified iron oxide nanoparticles or with Endorem (control). Optical microscopy and TEM confirmed the presence of PLL-modified iron oxide nanoparticles inside the cells. Cellular uptake was very high (more than 92%) for PLL-modified nanoparticles that were coated with PLL (molecular weight 388 00) at a concentration of 0.02 mg PLL per milliliter of colloid. The cellular uptake of PLL-modified iron oxide was facilitated by its interaction with the negatively charged cell surface and subsequent endosomolytic uptake. The relaxivity of rMSCs labeled with PLL-modified iron oxide and the amount of iron in the cells were determined. PLL-modified iron oxide-labeled rMSCs were imaged in vitro and in vivo after intracerebral grafting into the contralateral hemisphere of the adult rat brain. The implanted cells were visible on magnetic resonance (MR) images as a hypointense area at the injection site and in the lesion. In comparison with Endorem, nanoparticles modified with PLL of an optimum molecular weight demonstrated a higher efficiency of intracellular uptake by MSC cells.
650    _2
$a adsorpce $7 D000327
650    _2
$a zvířata $7 D000818
650    _2
$a kultivované buňky $7 D002478
650    _2
$a fyzikální chemie $7 D002627
650    _2
$a kultivační média $7 D003470
650    _2
$a endocytóza $x účinky léků $7 D004705
650    _2
$a železité sloučeniny $x chemie $7 D005290
650    _2
$a oxid železnato-železitý $7 D052203
650    _2
$a lidé $7 D006801
650    _2
$a železo $x chemie $7 D007501
650    _2
$a lysin $x chemie $7 D008239
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a magnetismus $7 D008280
650    _2
$a mezenchymální kmenové buňky $x účinky léků $x ultrastruktura $7 D059630
650    _2
$a mikroskopie elektronová rastrovací $7 D008855
650    _2
$a transmisní elektronová mikroskopie $7 D046529
650    _2
$a molekulová hmotnost $7 D008970
650    _2
$a nanočástice $7 D053758
650    _2
$a oxidy $x chemie $7 D010087
650    _2
$a velikost částic $7 D010316
650    _2
$a chemické jevy $7 D055598
650    _2
$a polylysin $x chemie $7 D011107
650    _2
$a proteiny $7 D011506
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a spektroskopie infračervená s Fourierovou transformací $7 D017550
650    _2
$a transplantace kmenových buněk $7 D033581
650    _2
$a ultrazvuk $7 D014465
650    _2
$a financování organizované $7 D005381
700    1_
$a Horák, Daniel $7 xx0076519
700    1_
$a Trchová, Miroslava $7 xx0104474
700    1_
$a Jendelová, Pavla, $d 1965- $7 xx0068971
700    1_
$a Glogarová, Kateřina. $7 _AN033985
700    1_
$a Lesný, Petr, $7 xx0060590 $d 1972-
700    1_
$a Herynek, Vít, $d 1967- $7 xx0069420
700    1_
$a Hájek, Milan, $d 1947- $7 xx0074172
700    1_
$a Syková, Eva, $d 1944- $7 jn20000710633
773    0_
$w MED00006454 $t Bioconjugate chemistry $g Roč. 19, č. 3 (2008), s. 740-750 $x 1043-1802
910    __
$a ABA008 $b x $y 7
990    __
$a 20110223123552 $b ABA008
991    __
$a 20120817225256 $b ABA008
999    __
$a ok $b bmc $g 823347 $s 688772
BAS    __
$a 3
BMC    __
$a 2008 $b 19 $c 3 $d 740-750 $i 1043-1802 $m Bioconjugate chemistry $n Bioconjug Chem $x MED00006454
LZP    __
$a 2011-2B/ewme

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...