-
Something wrong with this record ?
The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria
K. Homolova, P. Zavadakova, TK. Doktor, LD. Schroeder, V. Kozich, BS. Andresen,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20120036
DOI
10.1002/humu.21206
Knihovny.cz E-resources
- MeSH
- Chlorocebus aethiops MeSH
- COS Cells MeSH
- Exons genetics MeSH
- Ferredoxin-NADP Reductase genetics MeSH
- Homocystinuria classification enzymology genetics MeSH
- Introns genetics MeSH
- Nuclear Proteins metabolism MeSH
- RNA, Messenger genetics metabolism MeSH
- RNA Splice Sites genetics MeSH
- Molecular Sequence Data MeSH
- Mutation genetics MeSH
- Mutant Proteins genetics MeSH
- RNA-Binding Proteins metabolism MeSH
- Base Sequence MeSH
- RNA Splicing genetics MeSH
- Protein Binding MeSH
- Vitamin B 12 metabolism MeSH
- Computational Biology MeSH
- Enhancer Elements, Genetic genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Deep intronic mutations are often ignored as possible causes of human diseases. A deep intronic mutation in the MTRR gene, c.903+469T>C, is the most frequent mutation causing the cblE type of homocystinuria. It is well known to be associated with pre-mRNA mis-splicing, resulting in pseudoexon inclusion; however, the pathological mechanism remains unknown. We used minigenes to demonstrate that this mutation is the direct cause of MTRR pseudoexon inclusion, and that the pseudoexon is normally not recognized due to a suboptimal 5' splice site. Within the pseudoexon we identified an exonic splicing enhancer (ESE), which is activated by the mutation. Cotransfection and siRNA experiments showed that pseudoexon inclusion depends on the cellular amounts of SF2/ASF and in vitro RNA-binding assays showed dramatically increased SF2/ASF binding to the mutant MTRR ESE. The mutant MTRR ESE sequence is identical to an ESE of the alternatively spliced MST1R proto-oncogene, which suggests that this ESE could be frequently involved in splicing regulation. Our study conclusively demonstrates that an intronic single nucleotide change is sufficient to cause pseudoexon activation via creation of a functional ESE, which binds a specific splicing factor. We suggest that this mechanism may cause genetic disease much more frequently than previously reported.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12025948
- 003
- CZ-PrNML
- 005
- 20121207104120.0
- 007
- ta
- 008
- 120817s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1002/humu.21206 $2 doi
- 035 __
- $a (PubMed)20120036
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Homolová, Kateřina $u Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague 2, Czech Republic.
- 245 14
- $a The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria / $c K. Homolova, P. Zavadakova, TK. Doktor, LD. Schroeder, V. Kozich, BS. Andresen,
- 520 9_
- $a Deep intronic mutations are often ignored as possible causes of human diseases. A deep intronic mutation in the MTRR gene, c.903+469T>C, is the most frequent mutation causing the cblE type of homocystinuria. It is well known to be associated with pre-mRNA mis-splicing, resulting in pseudoexon inclusion; however, the pathological mechanism remains unknown. We used minigenes to demonstrate that this mutation is the direct cause of MTRR pseudoexon inclusion, and that the pseudoexon is normally not recognized due to a suboptimal 5' splice site. Within the pseudoexon we identified an exonic splicing enhancer (ESE), which is activated by the mutation. Cotransfection and siRNA experiments showed that pseudoexon inclusion depends on the cellular amounts of SF2/ASF and in vitro RNA-binding assays showed dramatically increased SF2/ASF binding to the mutant MTRR ESE. The mutant MTRR ESE sequence is identical to an ESE of the alternatively spliced MST1R proto-oncogene, which suggests that this ESE could be frequently involved in splicing regulation. Our study conclusively demonstrates that an intronic single nucleotide change is sufficient to cause pseudoexon activation via creation of a functional ESE, which binds a specific splicing factor. We suggest that this mechanism may cause genetic disease much more frequently than previously reported.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a COS buňky $7 D019556
- 650 _2
- $a Cercopithecus aethiops $7 D002522
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a zesilovače transkripce $x genetika $7 D004742
- 650 _2
- $a exony $x genetika $7 D005091
- 650 _2
- $a ferredoxin-NADP-reduktasa $x genetika $7 D005287
- 650 _2
- $a homocystinurie $x klasifikace $x enzymologie $x genetika $7 D006712
- 650 _2
- $a introny $x genetika $7 D007438
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a mutantní proteiny $x genetika $7 D050505
- 650 _2
- $a mutace $x genetika $7 D009154
- 650 _2
- $a jaderné proteiny $x metabolismus $7 D009687
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a místa sestřihu RNA $x genetika $7 D022821
- 650 _2
- $a sestřih RNA $x genetika $7 D012326
- 650 _2
- $a messenger RNA $x genetika $x metabolismus $7 D012333
- 650 _2
- $a proteiny vázající RNA $x metabolismus $7 D016601
- 650 _2
- $a vitamin B 12 $x metabolismus $7 D014805
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1#
- $a Zavaďáková, Petra. $7 xx0034904
- 700 1_
- $a Doktor, Thomas Koed
- 700 1_
- $a Schroeder, Lisbeth Dahl
- 700 1_
- $a Kožich, Viktor, $d 1960- $7 jo2003181496
- 700 1_
- $a Andresen, Brage S $7 gn_A_00006549
- 773 0_
- $w MED00002078 $t Human mutation $x 1098-1004 $g Roč. 31, č. 4 (2010), s. 437-44
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20120036 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121207104154 $b ABA008
- 999 __
- $a ok $b bmc $g 947990 $s 783294
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 31 $c 4 $d 437-44 $i 1098-1004 $m Human mutation $n Hum Mutat $x MED00002078
- LZP __
- $a Pubmed-20120817/10/03