-
Je něco špatně v tomto záznamu ?
Use of fuzzy edge single-photon emission computed tomography analysis in definite Alzheimer's disease--a retrospective study
R. Rusina, J. Kukal, T. Belícek, M. Buncová, R. Matej,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
BioMedCentral
od 2001-12-01
BioMedCentral Open Access
od 2001
Directory of Open Access Journals
od 2001
Free Medical Journals
od 2001
PubMed Central
od 2001
Europe PubMed Central
od 2001
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2001-11-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Medline Complete (EBSCOhost)
od 2001-01-01
Nursing & Allied Health Database (ProQuest)
od 2009-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
Springer Nature OA/Free Journals
od 2001-12-01
PubMed
20809946
DOI
10.1186/1471-2342-10-20
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- Alzheimerova nemoc MeSH
- fuzzy logika MeSH
- interpretace obrazu počítačem metody MeSH
- jednofotonová emisní výpočetní tomografie metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek MeSH
- reprodukovatelnost výsledků MeSH
- retrospektivní studie MeSH
- rozpoznávání automatizované metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- vylepšení obrazu metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Definite Alzheimer's disease (AD) requires neuropathological confirmation. Single-photon emission computed tomography (SPECT) may enhance diagnostic accuracy, but due to restricted sensitivity and specificity, the role of SPECT is largely limited with regard to this purpose. METHODS: We propose a new method of SPECT data analysis. The method is based on a combination of parietal lobe selection (as regions-of-interest (ROI)), 3D fuzzy edge detection, and 3D watershed transformation. We applied the algorithm to three-dimensional SPECT images of human brains and compared the number of watershed regions inside the ROI between AD patients and controls. The Student's two-sample t-test was used for testing domain number equity in both groups. RESULTS: AD patients had a significantly reduced number of watershed regions compared to controls (p < 0.01). A sensitivity of 94.1% and specificity of 80% was obtained with a threshold value of 57.11 for the watershed domain number. The narrowing of the SPECT analysis to parietal regions leads to a substantial increase in both sensitivity and specificity. CONCLUSIONS: Our non-invasive, relatively low-cost, and easy method can contribute to a more precise diagnosis of AD.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026130
- 003
- CZ-PrNML
- 005
- 20121206121620.0
- 007
- ta
- 008
- 120817e20100901enk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1186/1471-2342-10-20 $2 doi
- 035 __
- $a (PubMed)20809946
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Rusina, Robert $u Department of Neurology, Thomayer Teaching Hospital and Institute for Postgraduate Education in Medicine, Prague, Czech Republic. robert.rusina@ftn.cz
- 245 10
- $a Use of fuzzy edge single-photon emission computed tomography analysis in definite Alzheimer's disease--a retrospective study / $c R. Rusina, J. Kukal, T. Belícek, M. Buncová, R. Matej,
- 520 9_
- $a BACKGROUND: Definite Alzheimer's disease (AD) requires neuropathological confirmation. Single-photon emission computed tomography (SPECT) may enhance diagnostic accuracy, but due to restricted sensitivity and specificity, the role of SPECT is largely limited with regard to this purpose. METHODS: We propose a new method of SPECT data analysis. The method is based on a combination of parietal lobe selection (as regions-of-interest (ROI)), 3D fuzzy edge detection, and 3D watershed transformation. We applied the algorithm to three-dimensional SPECT images of human brains and compared the number of watershed regions inside the ROI between AD patients and controls. The Student's two-sample t-test was used for testing domain number equity in both groups. RESULTS: AD patients had a significantly reduced number of watershed regions compared to controls (p < 0.01). A sensitivity of 94.1% and specificity of 80% was obtained with a threshold value of 57.11 for the watershed domain number. The narrowing of the SPECT analysis to parietal regions leads to a substantial increase in both sensitivity and specificity. CONCLUSIONS: Our non-invasive, relatively low-cost, and easy method can contribute to a more precise diagnosis of AD.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a Alzheimerova nemoc $x radioizotopová diagnostika $7 D000544
- 650 _2
- $a mozek $x radioizotopová diagnostika $7 D001921
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a fuzzy logika $7 D017143
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a retrospektivní studie $7 D012189
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a jednofotonová emisní výpočetní tomografie $x metody $7 D015899
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kukal, Jaromír
- 700 1_
- $a Belícek, Tomás
- 700 1_
- $a Buncová, Marie
- 700 1_
- $a Matej, Radoslav
- 773 0_
- $w MED00006823 $t BMC medical imaging $x 1471-2342 $g Roč. 10(20100901), s. 20
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20809946 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121206121654 $b ABA008
- 999 __
- $a ok $b bmc $g 948172 $s 783476
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 10 $d 20 $e 20100901 $i 1471-2342 $m BMC medical imaging $n BMC Med Imaging $x MED00006823
- LZP __
- $a Pubmed-20120817/10/04