Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Study of edge detection task in dental panoramic radiographs

L. Gráfová, M. Kasparová, S. Kakawand, A. Procházka, T. Dostálová,

. 2013 ; 42 (7) : 20120391.

Language English Country England, Great Britain

Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't

Grant support
NT13351 MZ0 CEP Register

The purpose of this study is (1) to introduce a new approach for edge detection in orthopantograms (OPGs) and an improved automatic parameter selector for common edge detectors, (2) to present a comparison between our novel approach with common edge detectors and (3) to provide faster outputs without compromising quality. A new approach for edge detection based on statistical measures was introduced: (1) a set of N edge detection results is calculated from a given input image and a selected type of edge detector, (2) N correspondence maps are constructed from N edge detection results, (3) probabilities and average probabilities are computed, (4) an overall correspondence is evaluated for each correspondence map and (5) the correspondence map providing the best overall correspondence is taken as the result of edge detection procedure. A comparison with common edge detectors (the Roberts, Prewitt, Sobel, Laplacian of the Gaussian and Canny methods) with various parameter settings (304 combinations for each test image) was carried out. The methods were assessed objectively [edge mismatch error (EME), modified Hausdorff distance (MHD) and principal component analysis] and subjectively by experts in dentistry and based on time demands. The suitability of the new approach for edge detection in OPGs was confirmed by experts. The current conventional methods in edge detection in OPGs are inadequate (none of the tested methods reach an EME value or MHD value below 0.1). Our proposed approach for edge detection shows promising potential for its implementation in clinical dentistry. It enhances the accuracy of OPG interpretation and advances diagnosis and treatment planning.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13031476
003      
CZ-PrNML
005      
20191121084222.0
007      
ta
008      
131002s2013 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1259/dmfr.20120391 $2 doi
035    __
$a (PubMed)23640989
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Gráfová, L. $u Department of Computing and Control Engineering, Faculty of Chemical Engineering, Institute of Chemical Technology, 166 28 Prague 6, Czech Republic. grafova@gmail.com $7 _AN078592
245    10
$a Study of edge detection task in dental panoramic radiographs / $c L. Gráfová, M. Kasparová, S. Kakawand, A. Procházka, T. Dostálová,
520    9_
$a The purpose of this study is (1) to introduce a new approach for edge detection in orthopantograms (OPGs) and an improved automatic parameter selector for common edge detectors, (2) to present a comparison between our novel approach with common edge detectors and (3) to provide faster outputs without compromising quality. A new approach for edge detection based on statistical measures was introduced: (1) a set of N edge detection results is calculated from a given input image and a selected type of edge detector, (2) N correspondence maps are constructed from N edge detection results, (3) probabilities and average probabilities are computed, (4) an overall correspondence is evaluated for each correspondence map and (5) the correspondence map providing the best overall correspondence is taken as the result of edge detection procedure. A comparison with common edge detectors (the Roberts, Prewitt, Sobel, Laplacian of the Gaussian and Canny methods) with various parameter settings (304 combinations for each test image) was carried out. The methods were assessed objectively [edge mismatch error (EME), modified Hausdorff distance (MHD) and principal component analysis] and subjectively by experts in dentistry and based on time demands. The suitability of the new approach for edge detection in OPGs was confirmed by experts. The current conventional methods in edge detection in OPGs are inadequate (none of the tested methods reach an EME value or MHD value below 0.1). Our proposed approach for edge detection shows promising potential for its implementation in clinical dentistry. It enhances the accuracy of OPG interpretation and advances diagnosis and treatment planning.
650    _2
$a algoritmy $7 D000465
650    _2
$a anatomická značka $x radiografie $7 D059925
650    _2
$a artefakty $7 D016477
650    _2
$a zubní kaz $x radiografie $7 D003731
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x statistika a číselné údaje $7 D007091
650    _2
$a cysty čelistí $x radiografie $7 D007570
650    _2
$a normální rozdělení $7 D016011
650    _2
$a analýza hlavních komponent $7 D025341
650    _2
$a pravděpodobnost $7 D011336
650    _2
$a rentgenový obraz - interpretace počítačová $x metody $7 D011857
650    _2
$a rentgendiagnostika panoramatická $x statistika a číselné údaje $7 D011862
650    _2
$a časové faktory $7 D013997
650    _2
$a extrakce zubů $7 D014081
650    _2
$a zuby přespočetné $x radiografie $7 D014096
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kašparová, Magdaléna $u - $7 xx0158240
700    1_
$a Kakawand, S $u -
700    1_
$a Procházka, A $u -
700    1_
$a Dostálová, Taťjana, $u - $d 1955- $7 mzk2004229214
773    0_
$w MED00001336 $t Dento maxillo facial radiology $x 0250-832X $g Roč. 42, č. 7 (2013), s. 20120391
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23640989 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20131002 $b ABA008
991    __
$a 20191121084504 $b ABA008
999    __
$a ok $b bmc $g 995563 $s 829921
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 42 $c 7 $d 20120391 $i 0250-832X $m Dento-maxillo-facial radiology $n Dentomaxillofac Radiol $x MED00001336
GRA    __
$a NT13351 $p MZ0
LZP    __
$a Pubmed-20131002

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...