• Something wrong with this record ?

Novel method for localization of common carotid artery transverse section in ultrasound images using modified Viola-Jones detector

K. Ríha, J. Mašek, R. Burget, R. Beneš, E. Závodná,

. 2013 ; 39 (10) : 1887-902.

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

This article describes a novel method for highly accurate and effective localization of the transverse section of the carotis comunis artery in ultrasound images. The method has a high success rate, approximately 97%. Unlike analytical methods based on geometric descriptions of the object sought, the method proposed here can cover a large area of shape variation of the artery under study, which normally occurs during examinations as a result of the pressure on the examined tissue, tilt of the probe, setup of the sonographic device, and other factors. This method shows great promise in automating the process of determining circulatory system parameters in the non-invasive clinical diagnostics of cardiovascular diseases. The method employs a Viola-Jones detector that has been specially adapted for efficient detection of transverse sections of the carotid artery. This algorithm is trained on a set of labeled images using the AdaBoost algorithm, Haar-like features and the Matthews coefficient. The training algorithm of the artery detector was modified using evolutionary algorithms. The method for training a cascade of classifiers achieves on a small number of positive and negative training data samples (about 500 images) a high success rate in a computational time that allows implementation of the detector in real time. Testing was performed on images of different patients for whom different ultrasonic instruments were used under different conditions (settings) so that the algorithm developed is applicable in general radiologic practice.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14064102
003      
CZ-PrNML
005      
20140708090141.0
007      
ta
008      
140704s2013 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ultrasmedbio.2013.04.013 $2 doi
035    __
$a (PubMed)23849387
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ríha, Kamil $u Signal Processing Laboratory, Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic. rihak@feec.vutbr.cz
245    10
$a Novel method for localization of common carotid artery transverse section in ultrasound images using modified Viola-Jones detector / $c K. Ríha, J. Mašek, R. Burget, R. Beneš, E. Závodná,
520    9_
$a This article describes a novel method for highly accurate and effective localization of the transverse section of the carotis comunis artery in ultrasound images. The method has a high success rate, approximately 97%. Unlike analytical methods based on geometric descriptions of the object sought, the method proposed here can cover a large area of shape variation of the artery under study, which normally occurs during examinations as a result of the pressure on the examined tissue, tilt of the probe, setup of the sonographic device, and other factors. This method shows great promise in automating the process of determining circulatory system parameters in the non-invasive clinical diagnostics of cardiovascular diseases. The method employs a Viola-Jones detector that has been specially adapted for efficient detection of transverse sections of the carotid artery. This algorithm is trained on a set of labeled images using the AdaBoost algorithm, Haar-like features and the Matthews coefficient. The training algorithm of the artery detector was modified using evolutionary algorithms. The method for training a cascade of classifiers achieves on a small number of positive and negative training data samples (about 500 images) a high success rate in a computational time that allows implementation of the detector in real time. Testing was performed on images of different patients for whom different ultrasonic instruments were used under different conditions (settings) so that the algorithm developed is applicable in general radiologic practice.
650    12
$a algoritmy $7 D000465
650    _2
$a umělá inteligence $7 D001185
650    _2
$a arteriae carotides $x ultrasonografie $7 D002339
650    _2
$a počítačové systémy $7 D003199
650    _2
$a lidé $7 D006801
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a software $7 D012984
650    _2
$a ultrasonografie $x metody $7 D014463
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mašek, Jan
700    1_
$a Burget, Radim
700    1_
$a Beneš, Radek
700    1_
$a Závodná, Eva
773    0_
$w MED00004601 $t Ultrasound in medicine & biology $x 1879-291X $g Roč. 39, č. 10 (2013), s. 1887-902
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23849387 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140704 $b ABA008
991    __
$a 20140708090430 $b ABA008
999    __
$a ok $b bmc $g 1031586 $s 862834
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 39 $c 10 $d 1887-902 $i 1879-291X $m Ultrasound in medicine & biology $n Ultrasound Med Biol $x MED00004601
LZP    __
$a Pubmed-20140704

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...