• Something wrong with this record ?

Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats

M. Cahova, P. Chrastina, H. Hansikova, Z. Drahota, J. Trnovska, V. Skop, J. Spacilova, H. Malinska, O. Oliyarnyk, Z. Papackova, E. Palenickova, L. Kazdova,

. 2015 ; 40 (3) : 280-91.

Language English Country Canada

Document type Journal Article, Research Support, Non-U.S. Gov't

The aim of this study was to estimate the effect of carnitine supplementation on lipid disorders and peripheral tissue insulin sensitivity in a non-obese animal model of insulin resistance, the hereditary hypertriglyceridemic (HHTg) rat. Male HHTg rats were fed a standard diet, and half of them received daily doses of carnitine (500 mg·kg(-1) body weight) for 8 weeks. Rats of the original Wistar strain were used for comparison. HHTg rats exhibited increased urinary excretion of free carnitine and reduced carnitine content in the liver and blood. Carnitine supplementation compensated for this shortage and promoted urinary excretion of acetylcarnitine without any signs of (acyl)carnitine accumulation in skeletal muscle. Compared with their untreated littermates, carnitine-treated HHTg rats exhibited lower weight gain, reduced liver steatosis, lower fasting triglyceridemia, and greater reduction of serum free fatty acid content after glucose load. Carnitine treatment was associated with increased mitochondrial biogenesis and oxidative capacity for fatty acids, amelioration of oxidative stress, and restored substrate switching in the liver. In skeletal muscle (diaphragm), carnitine supplementation was associated with significantly higher palmitate oxidation and a more favorable complete to incomplete oxidation products ratio. Carnitine supplementation further enhanced insulin sensitivity ex vivo. No effects on whole-body glucose tolerance were observed. Our data suggest that some metabolic syndrome-related disorders, particularly fatty acid oxidation, steatosis, and oxidative stress in the liver, could be attenuated by carnitine supplementation. The effect of carnitine could be explained, at least partly, by enhanced substrate oxidation and increased fatty acid transport from tissues in the form of short-chain acylcarnitines.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028481
003      
CZ-PrNML
005      
20250618144233.0
007      
ta
008      
161005s2015 xxc f 000 0|eng||
009      
AR
024    7_
$a 10.1139/apnm-2014-0163 $2 doi
024    7_
$a 10.1139/apnm-2014-0163 $2 doi
035    __
$a (PubMed)25723909
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxc
100    1_
$a Cahova, Monika $u Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 4, Czech Republic.
245    10
$a Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats / $c M. Cahova, P. Chrastina, H. Hansikova, Z. Drahota, J. Trnovska, V. Skop, J. Spacilova, H. Malinska, O. Oliyarnyk, Z. Papackova, E. Palenickova, L. Kazdova,
520    9_
$a The aim of this study was to estimate the effect of carnitine supplementation on lipid disorders and peripheral tissue insulin sensitivity in a non-obese animal model of insulin resistance, the hereditary hypertriglyceridemic (HHTg) rat. Male HHTg rats were fed a standard diet, and half of them received daily doses of carnitine (500 mg·kg(-1) body weight) for 8 weeks. Rats of the original Wistar strain were used for comparison. HHTg rats exhibited increased urinary excretion of free carnitine and reduced carnitine content in the liver and blood. Carnitine supplementation compensated for this shortage and promoted urinary excretion of acetylcarnitine without any signs of (acyl)carnitine accumulation in skeletal muscle. Compared with their untreated littermates, carnitine-treated HHTg rats exhibited lower weight gain, reduced liver steatosis, lower fasting triglyceridemia, and greater reduction of serum free fatty acid content after glucose load. Carnitine treatment was associated with increased mitochondrial biogenesis and oxidative capacity for fatty acids, amelioration of oxidative stress, and restored substrate switching in the liver. In skeletal muscle (diaphragm), carnitine supplementation was associated with significantly higher palmitate oxidation and a more favorable complete to incomplete oxidation products ratio. Carnitine supplementation further enhanced insulin sensitivity ex vivo. No effects on whole-body glucose tolerance were observed. Our data suggest that some metabolic syndrome-related disorders, particularly fatty acid oxidation, steatosis, and oxidative stress in the liver, could be attenuated by carnitine supplementation. The effect of carnitine could be explained, at least partly, by enhanced substrate oxidation and increased fatty acid transport from tissues in the form of short-chain acylcarnitines.
650    _2
$a zvířata $7 D000818
650    _2
$a karnitin $x aplikace a dávkování $x analogy a deriváty $x krev $x metabolismus $x farmakologie $x moč $7 D002331
650    _2
$a mitochondriální DNA $x genetika $7 D004272
650    _2
$a potravní doplňky $7 D019587
650    _2
$a regulace genové exprese $x účinky léků $x fyziologie $7 D005786
650    _2
$a genetická predispozice k nemoci $7 D020022
650    _2
$a homeostáza $7 D006706
650    _2
$a hypertriglyceridemie $x genetika $x metabolismus $7 D015228
650    _2
$a inzulinová rezistence $7 D007333
650    _2
$a ledviny $x účinky léků $x metabolismus $7 D007668
650    _2
$a metabolismus lipidů $x účinky léků $7 D050356
650    _2
$a játra $x metabolismus $7 D008099
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a kosterní svaly $x metabolismus $7 D018482
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a krysa rodu Rattus $7 D051381
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Chrastina, Petr
700    1_
$a Hansikova, Hana
700    1_
$a Drahota, Zdeněk, $d 1932- $7 jn20000400531
700    1_
$a Trnovska, Jaroslava
700    1_
$a Skop, Vojtech
700    1_
$a Spacilova, Jana
700    1_
$a Malinska, Hana
700    1_
$a Oliyarnyk, Olena
700    1_
$a Papackova, Zuzana
700    1_
$a Palenickova, Eliska
700    1_
$a Kazdová, Ludmila, $d 1938-2025 $7 xx0053119
773    0_
$w MED00172613 $t Applied physiology, nutrition, and metabolism $x 1715-5320 $g Roč. 40, č. 3 (2015), s. 280-91
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25723909 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20250618144223 $b ABA008
999    __
$a ok $b bmc $g 1166795 $s 953111
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 40 $c 3 $d 280-91 $i 1715-5320 $m Applied physiology, nutrition, and metabolism $n Appl Physiol Nutr Metab $x MED00172613
LZP    __
$a Pubmed-20161005

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...