-
Je něco špatně v tomto záznamu ?
MAGERI: Computational pipeline for molecular-barcoded targeted resequencing
M. Shugay, AR. Zaretsky, DA. Shagin, IA. Shagina, IA. Volchenkov, AA. Shelenkov, MY. Lebedin, DV. Bagaev, S. Lukyanov, DM. Chudakov,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-06-01
Open Access Digital Library
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Medline Complete (EBSCOhost)
od 2005-06-01
Health & Medicine (ProQuest)
od 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- databáze genetické MeSH
- lidé MeSH
- nádorové biomarkery krev genetika MeSH
- nádory genetika MeSH
- RNA virová genetika MeSH
- sekvenční analýza DNA metody MeSH
- sekvenční analýza RNA metody MeSH
- software * MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023126
- 003
- CZ-PrNML
- 005
- 20170908125016.0
- 007
- ta
- 008
- 170720s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1005480 $2 doi
- 035 __
- $a (PubMed)28475621
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Shugay, Mikhail $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia. Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia. Central European Institute of Technology, Masaryk University, Brno, Czech republic.
- 245 10
- $a MAGERI: Computational pipeline for molecular-barcoded targeted resequencing / $c M. Shugay, AR. Zaretsky, DA. Shagin, IA. Shagina, IA. Volchenkov, AA. Shelenkov, MY. Lebedin, DV. Bagaev, S. Lukyanov, DM. Chudakov,
- 520 9_
- $a Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.
- 650 _2
- $a nádorové biomarkery $x krev $x genetika $7 D014408
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a databáze genetické $7 D030541
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nádory $x genetika $7 D009369
- 650 _2
- $a RNA virová $x genetika $7 D012367
- 650 _2
- $a sekvenční analýza DNA $x metody $7 D017422
- 650 _2
- $a sekvenční analýza RNA $x metody $7 D017423
- 650 12
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Zaretsky, Andrew R $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia. Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia. Evrogen JSC, Miklukho-Maklaya 16/10, Moscow, Russia.
- 700 1_
- $a Shagin, Dmitriy A $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia. Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia.
- 700 1_
- $a Shagina, Irina A $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia. Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia.
- 700 1_
- $a Volchenkov, Ivan A $u Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia. Evrogen JSC, Miklukho-Maklaya 16/10, Moscow, Russia.
- 700 1_
- $a Shelenkov, Andrew A $u Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia. Evrogen JSC, Miklukho-Maklaya 16/10, Moscow, Russia.
- 700 1_
- $a Lebedin, Mikhail Y $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia. Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia. Central European Institute of Technology, Masaryk University, Brno, Czech republic.
- 700 1_
- $a Bagaev, Dmitriy V $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia.
- 700 1_
- $a Lukyanov, Sergey $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia. Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia.
- 700 1_
- $a Chudakov, Dmitriy M $u Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia. Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia. Central European Institute of Technology, Masaryk University, Brno, Czech republic. Skolkovo Institute of Science and Technology, Nobel 3, Moscow, Russia.
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 13, č. 5 (2017), s. e1005480
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28475621 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170908125617 $b ABA008
- 999 __
- $a ok $b bmc $g 1238807 $s 984039
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 13 $c 5 $d e1005480 $e 20170505 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20170720