Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Revisiting the iron pools in cucumber roots: identification and localization

K. Kovács, J. Pechoušek, L. Machala, R. Zbořil, Z. Klencsár, Á. Solti, B. Tóth, B. Müller, HD. Pham, Z. Kristóf, F. Fodor,

. 2016 ; 244 (1) : 167-79. [pub] 20160322

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17024105
E-zdroje Online Plný text

NLK ProQuest Central od 2002-11-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 1999-11-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2002-11-01 do Před 1 rokem

MAIN CONCLUSION: Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17024105
003      
CZ-PrNML
005      
20170908125555.0
007      
ta
008      
170720s2016 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00425-016-2502-x $2 doi
035    __
$a (PubMed)27002973
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Kovács, Krisztina $u Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest, 1512, Hungary. kkriszti@chem.elte.hu.
245    10
$a Revisiting the iron pools in cucumber roots: identification and localization / $c K. Kovács, J. Pechoušek, L. Machala, R. Zbořil, Z. Klencsár, Á. Solti, B. Tóth, B. Müller, HD. Pham, Z. Kristóf, F. Fodor,
520    9_
$a MAIN CONCLUSION: Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.
650    _2
$a Cucumis sativus $x metabolismus $x ultrastruktura $7 D018553
650    _2
$a železité sloučeniny $x metabolismus $7 D005290
650    _2
$a imunoblotting $7 D015151
650    _2
$a železo $x metabolismus $7 D007501
650    _2
$a sloučeniny železa $x metabolismus $7 D058085
650    _2
$a elektronová mikroskopie $7 D008854
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a kořeny rostlin $x metabolismus $x ultrastruktura $7 D018517
650    _2
$a spektroskopie Mossbauerova $7 D015204
650    _2
$a xylém $x metabolismus $7 D052584
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pechoušek, Jiří $u Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 771 46, Olomouc, Czech Republic.
700    1_
$a Machala, Libor $u Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 771 46, Olomouc, Czech Republic.
700    1_
$a Zbořil, Radek $u Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 771 46, Olomouc, Czech Republic.
700    1_
$a Klencsár, Zoltán $u Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
700    1_
$a Solti, Ádám $u Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter lane 1/c, Budapest, 1117, Hungary.
700    1_
$a Tóth, Brigitta $u Department of Botany, Crop Physiology and Biotechnology, Institute of Plant Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Str., Debrecen, 4032, Hungary.
700    1_
$a Müller, Brigitta $u Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter lane 1/c, Budapest, 1117, Hungary.
700    1_
$a Pham, Hong Diep $u Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter lane 1/c, Budapest, 1117, Hungary.
700    1_
$a Kristóf, Zoltán $u Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter lane 1/c, Budapest, 1117, Hungary.
700    1_
$a Fodor, Ferenc $u Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter lane 1/c, Budapest, 1117, Hungary.
773    0_
$w MED00005789 $t Planta $x 1432-2048 $g Roč. 244, č. 1 (2016), s. 167-79
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27002973 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170908130156 $b ABA008
999    __
$a ok $b bmc $g 1239786 $s 985018
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 244 $c 1 $d 167-79 $e 20160322 $i 1432-2048 $m Planta $n Planta $x MED00005789
LZP    __
$a Pubmed-20170720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...