• Something wrong with this record ?

Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology

M. Holubová, L. Hrubá, A. Popelová, M. Bencze, V. Pražienková, S. Gengler, H. Kratochvílová, M. Haluzík, B. Železná, J. Kuneš, C. Hölscher, L. Maletínská,

. 2019 ; 144 (-) : 377-387. [pub] 20181111

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Obesity and type 2 diabetes mellitus (T2DM) are important risk factors for Alzheimer's disease (AD). Drugs originally developed for T2DM treatment, e.g., analog of glucagon-like peptide 1 liraglutide, have shown neuroprotective effects in mouse models of AD. We previously examined the neuroprotective properties of palm11-PrRP31, an anorexigenic and glucose-lowering analog of prolactin-releasing peptide, in a mouse model of AD-like Tau pathology, THY-Tau22 mice. Here, we demonstrate the neuroprotective effects of palm11-PrRP31 in double transgenic APP/PS1 mice, a model of AD-like β-amyloid (Aβ) pathology. The 7-8-month-old APP/PS1 male mice were subcutaneously injected with liraglutide or palm11-PrRP31 for 2 months. Both the liraglutide and palm11-PrRP31 treatments reduced the Aβ plaque load in the hippocampus. Palm11-PrRP31 also significantly reduced hippocampal microgliosis, consistent with our observations of a reduced Aβ plaque load, and reduced cortical astrocytosis, similar to the treatment with liraglutide. Palm11-PrRP31 also tended to increase neurogenesis, as indicated by the number of doublecortin-positive cells in the hippocampus. After the treatment with both anorexigenic compounds, we observed a significant decrease in Tau phosphorylation at Thr231, one of the first epitopes phosphorylated in AD. This effect was probably caused by elevated activity of protein phosphatase 2A subunit C, the main Tau phosphatase. Both liraglutide and palm11-PrRP31 reduced the levels of caspase 3, which has multiple roles in the pathogenesis of AD. Palm11-PrRP31 increased protein levels of the pre-synaptic marker synaptophysin, suggesting that palm11-PrRP31 might help preserve synapses. These results indicate that palm11-PrRP31 has promising potential for the treatment of neurodegenerative diseases.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012155
003      
CZ-PrNML
005      
20210614150808.0
007      
ta
008      
190405s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neuropharm.2018.11.002 $2 doi
035    __
$a (PubMed)30428311
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Holubová, Martina $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic.
245    10
$a Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology / $c M. Holubová, L. Hrubá, A. Popelová, M. Bencze, V. Pražienková, S. Gengler, H. Kratochvílová, M. Haluzík, B. Železná, J. Kuneš, C. Hölscher, L. Maletínská,
520    9_
$a Obesity and type 2 diabetes mellitus (T2DM) are important risk factors for Alzheimer's disease (AD). Drugs originally developed for T2DM treatment, e.g., analog of glucagon-like peptide 1 liraglutide, have shown neuroprotective effects in mouse models of AD. We previously examined the neuroprotective properties of palm11-PrRP31, an anorexigenic and glucose-lowering analog of prolactin-releasing peptide, in a mouse model of AD-like Tau pathology, THY-Tau22 mice. Here, we demonstrate the neuroprotective effects of palm11-PrRP31 in double transgenic APP/PS1 mice, a model of AD-like β-amyloid (Aβ) pathology. The 7-8-month-old APP/PS1 male mice were subcutaneously injected with liraglutide or palm11-PrRP31 for 2 months. Both the liraglutide and palm11-PrRP31 treatments reduced the Aβ plaque load in the hippocampus. Palm11-PrRP31 also significantly reduced hippocampal microgliosis, consistent with our observations of a reduced Aβ plaque load, and reduced cortical astrocytosis, similar to the treatment with liraglutide. Palm11-PrRP31 also tended to increase neurogenesis, as indicated by the number of doublecortin-positive cells in the hippocampus. After the treatment with both anorexigenic compounds, we observed a significant decrease in Tau phosphorylation at Thr231, one of the first epitopes phosphorylated in AD. This effect was probably caused by elevated activity of protein phosphatase 2A subunit C, the main Tau phosphatase. Both liraglutide and palm11-PrRP31 reduced the levels of caspase 3, which has multiple roles in the pathogenesis of AD. Palm11-PrRP31 increased protein levels of the pre-synaptic marker synaptophysin, suggesting that palm11-PrRP31 might help preserve synapses. These results indicate that palm11-PrRP31 has promising potential for the treatment of neurodegenerative diseases.
650    _2
$a Alzheimerova nemoc $x farmakoterapie $x metabolismus $x patologie $7 D000544
650    _2
$a amyloidní beta-protein $x metabolismus $7 D016229
650    _2
$a amyloidóza $x farmakoterapie $x metabolismus $x patologie $7 D000686
650    _2
$a zvířata $7 D000818
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a glióza $x farmakoterapie $x metabolismus $x patologie $7 D005911
650    _2
$a hipokampus $x účinky léků $x metabolismus $x patologie $7 D006624
650    _2
$a lidé $7 D006801
650    _2
$a zánět $x farmakoterapie $x metabolismus $x patologie $7 D007249
650    _2
$a liraglutid $x farmakologie $7 D000069450
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a myši transgenní $7 D008822
650    _2
$a neurogeneze $x účinky léků $7 D055495
650    _2
$a neuroprotektivní látky $x farmakologie $7 D018696
650    _2
$a amyloidní plaky $x farmakoterapie $x metabolismus $x patologie $7 D058225
650    _2
$a hormon uvolňující prolaktin $x analogy a deriváty $7 D056690
650    _2
$a náhodné rozdělení $7 D011897
650    _2
$a proteiny tau $x metabolismus $7 D016875
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hrubá, Lucie $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic.
700    1_
$a Popelová, Andrea $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic.
700    1_
$a Bencze, Michal, $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic. $d 1986- $7 av2016924515
700    1_
$a Pražienková, Veronika $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic.
700    1_
$a Gengler, Simon $u Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom.
700    1_
$a Kratochvílová, Helena $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21, Prague 4, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08, Prague 2, Czech Republic.
700    1_
$a Haluzík, Martin $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21, Prague 4, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08, Prague 2, Czech Republic.
700    1_
$a Železná, Blanka $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic.
700    1_
$a Kuneš, Jaroslav $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
700    1_
$a Hölscher, Christian $u Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom.
700    1_
$a Maletínská, Lenka $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic. Electronic address: maletin@uochb.cas.cz.
773    0_
$w MED00003497 $t Neuropharmacology $x 1873-7064 $g Roč. 144, č. - (2019), s. 377-387
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30428311 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20210614150808 $b ABA008
999    __
$a ok $b bmc $g 1391465 $s 1050460
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 144 $c - $d 377-387 $e 20181111 $i 1873-7064 $m Neuropharmacology $n Neuropharmacology $x MED00003497
LZP    __
$a Pubmed-20190405

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...