-
Je něco špatně v tomto záznamu ?
Mutational Asymmetries in the SARS-CoV-2 Genome May Lead to Increased Hydrophobicity of Virus Proteins
R. Matyášek, K. Řehůřková, K. Berta Marošiová, A. Kovařík
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-03442S
Czech Science Foundation
20-28029S
Czech Science Foundation
Strategy AV21, Program Qualitas,CZ68081707
Czech Academy of Science
NLK
Free Medical Journals
od 2010
PubMed Central
od 2010
Europe PubMed Central
od 2010
ProQuest Central
od 2010-03-01
Open Access Digital Library
od 2010-01-01
Open Access Digital Library
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
PubMed
34072181
DOI
10.3390/genes12060826
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- aminokyseliny chemie genetika MeSH
- COVID-19 virologie MeSH
- deaminasy APOBEC MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom virový * MeSH
- genotyp MeSH
- glykoprotein S, koronavirus chemie genetika MeSH
- hydrofobní a hydrofilní interakce * MeSH
- interakce hostitele a patogenu MeSH
- interakční proteinové domény a motivy MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- molekulární evoluce MeSH
- mutace * MeSH
- SARS-CoV-2 genetika MeSH
- substituce aminokyselin MeSH
- vazba proteinů MeSH
- virové proteiny chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genomic diversity of SARS-CoV-2 has been a focus during the ongoing COVID-19 pandemic. Here, we analyzed the distribution and character of emerging mutations in a data set comprising more than 95,000 virus genomes covering eight major SARS-CoV-2 lineages in the GISAID database, including genotypes arising during COVID-19 therapy. Globally, the C>U transitions and G>U transversions were the most represented mutations, accounting for the majority of single-nucleotide variations. Mutational spectra were not influenced by the time the virus had been circulating in its host or medical treatment. At the amino acid level, we observed about a 2-fold excess of substitutions in favor of hydrophobic amino acids over the reverse. However, most mutations constituting variants of interests of the S-protein (spike) lead to hydrophilic amino acids, counteracting the global trend. The C>U and G>U substitutions altered codons towards increased amino acid hydrophobicity values in more than 80% of cases. The bias is explained by the existing differences in the codon composition for amino acids bearing contrasting biochemical properties. Mutation asymmetries apparently influence the biochemical features of SARS CoV-2 proteins, which may impact protein-protein interactions, fusion of viral and cellular membranes, and virion assembly.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21018557
- 003
- CZ-PrNML
- 005
- 20210830100134.0
- 007
- ta
- 008
- 210728s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/genes12060826 $2 doi
- 035 __
- $a (PubMed)34072181
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Matyášek, Roman $u Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
- 245 10
- $a Mutational Asymmetries in the SARS-CoV-2 Genome May Lead to Increased Hydrophobicity of Virus Proteins / $c R. Matyášek, K. Řehůřková, K. Berta Marošiová, A. Kovařík
- 520 9_
- $a The genomic diversity of SARS-CoV-2 has been a focus during the ongoing COVID-19 pandemic. Here, we analyzed the distribution and character of emerging mutations in a data set comprising more than 95,000 virus genomes covering eight major SARS-CoV-2 lineages in the GISAID database, including genotypes arising during COVID-19 therapy. Globally, the C>U transitions and G>U transversions were the most represented mutations, accounting for the majority of single-nucleotide variations. Mutational spectra were not influenced by the time the virus had been circulating in its host or medical treatment. At the amino acid level, we observed about a 2-fold excess of substitutions in favor of hydrophobic amino acids over the reverse. However, most mutations constituting variants of interests of the S-protein (spike) lead to hydrophilic amino acids, counteracting the global trend. The C>U and G>U substitutions altered codons towards increased amino acid hydrophobicity values in more than 80% of cases. The bias is explained by the existing differences in the codon composition for amino acids bearing contrasting biochemical properties. Mutation asymmetries apparently influence the biochemical features of SARS CoV-2 proteins, which may impact protein-protein interactions, fusion of viral and cellular membranes, and virion assembly.
- 650 _2
- $a deaminasy APOBEC $7 D000071478
- 650 _2
- $a alely $7 D000483
- 650 _2
- $a substituce aminokyselin $7 D019943
- 650 _2
- $a aminokyseliny $x chemie $x genetika $7 D000596
- 650 _2
- $a COVID-19 $x virologie $7 D000086382
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genetická variace $7 D014644
- 650 12
- $a genom virový $7 D016679
- 650 _2
- $a genotyp $7 D005838
- 650 _2
- $a interakce hostitele a patogenu $7 D054884
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 12
- $a mutace $7 D009154
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a jednonukleotidový polymorfismus $7 D020641
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a interakční proteinové domény a motivy $7 D054730
- 650 _2
- $a SARS-CoV-2 $x genetika $7 D000086402
- 650 _2
- $a glykoprotein S, koronavirus $x chemie $x genetika $7 D064370
- 650 _2
- $a virové proteiny $x chemie $x genetika $7 D014764
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Řehůřková, Kateřina $u Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
- 700 1_
- $a Berta Marošiová, Kristýna $u Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
- 700 1_
- $a Kovařík, Aleš $u Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
- 773 0_
- $w MED00174652 $t Genes $x 2073-4425 $g Roč. 12, č. 6 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34072181 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830100134 $b ABA008
- 999 __
- $a ok $b bmc $g 1689603 $s 1139003
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 12 $c 6 $e 20210527 $i 2073-4425 $m Genes $n Genes $x MED00174652
- GRA __
- $a 19-03442S $p Czech Science Foundation
- GRA __
- $a 20-28029S $p Czech Science Foundation
- GRA __
- $a Strategy AV21, Program Qualitas,CZ68081707 $p Czech Academy of Science
- LZP __
- $a Pubmed-20210728