-
Je něco špatně v tomto záznamu ?
Associations of Brain Atrophy and Cerebral Iron Accumulation at MRI with Clinical Severity in Wilson Disease
P. Dusek, A. Lescinskij, F. Ruzicka, J. Acosta-Cabronero, R. Bruha, T. Sieger, M. Hajek, M. Dezortova
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- atrofie MeSH
- hepatolentikulární degenerace diagnostické zobrazování farmakoterapie metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování metabolismus patologie MeSH
- prospektivní studie MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- železo metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Background Abnormal findings at brain MRI in patients with neurologic Wilson disease (WD) are characterized by signal intensity changes and cerebral atrophy. T2 signal hypointensities and atrophy are largely irreversible with treatment; their relationship with permanent disability has not been systematically investigated. Purpose To investigate associations of regional brain atrophy and iron accumulation at MRI with clinical severity in participants with neurologic WD who are undergoing long-term anti-copper treatment. Materials and Methods Participants with WD and controls were compared in a prospective study performed from 2015 to 2019. MRI at 3.0 T included three-dimensional T1-weighted and six-echo multigradient-echo pulse sequences for morphometry and quantitative susceptibility mapping, respectively. Neurologic severity was assessed with the Unified WD Rating Scale (UWDRS). Automated multi-atlas segmentation pipeline with dual contrast (susceptibility and T1) was used for the calculation of volumes and mean susceptibilities in deep gray matter nuclei. Additionally, whole-brain analysis using deformation and surface-based morphometry was performed. Least absolute shrinkage and selection operator regression was used to assess the association of regional volumes and susceptibilities with the UWDRS score. Results Twenty-nine participants with WD (mean age, 47 years ± 9 [standard deviation]; 15 women) and 26 controls (mean age, 45 years ± 12; 14 women) were evaluated. Whole-brain analysis demonstrated atrophy of the deep gray matter nuclei, brainstem, internal capsule, motor cortex and corticospinal pathway, and visual cortex and optic radiation in participants with WD (P < .05 at voxel level, corrected for family-wise error). The UWDRS score was negatively correlated with volumes of putamen (r = -0.63, P < .001), red nucleus (r = -0.58, P = .001), globus pallidus (r = -0.53, P = .003), and substantia nigra (r = -0.50, P = .006) but not with susceptibilities. Only the putaminal volume was identified as a stable factor associated with the UWDRS score (R2 = 0.38, P < .001) using least absolute shrinkage and selection operator regression. Conclusion Individuals with Wilson disease (WD) had widespread brain atrophy most pronounced in the central structures. The putaminal volume was associated with the Unified WD Rating Scale score and can be used as a surrogate imaging marker of clinical severity. © RSNA, 2021 Supplemental material is available for this article. See also the editorial by Du and Bydder in this issue.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025696
- 003
- CZ-PrNML
- 005
- 20211026133603.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1148/radiol.2021202846 $2 doi
- 035 __
- $a (PubMed)33754827
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dusek, Petr $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 245 10
- $a Associations of Brain Atrophy and Cerebral Iron Accumulation at MRI with Clinical Severity in Wilson Disease / $c P. Dusek, A. Lescinskij, F. Ruzicka, J. Acosta-Cabronero, R. Bruha, T. Sieger, M. Hajek, M. Dezortova
- 520 9_
- $a Background Abnormal findings at brain MRI in patients with neurologic Wilson disease (WD) are characterized by signal intensity changes and cerebral atrophy. T2 signal hypointensities and atrophy are largely irreversible with treatment; their relationship with permanent disability has not been systematically investigated. Purpose To investigate associations of regional brain atrophy and iron accumulation at MRI with clinical severity in participants with neurologic WD who are undergoing long-term anti-copper treatment. Materials and Methods Participants with WD and controls were compared in a prospective study performed from 2015 to 2019. MRI at 3.0 T included three-dimensional T1-weighted and six-echo multigradient-echo pulse sequences for morphometry and quantitative susceptibility mapping, respectively. Neurologic severity was assessed with the Unified WD Rating Scale (UWDRS). Automated multi-atlas segmentation pipeline with dual contrast (susceptibility and T1) was used for the calculation of volumes and mean susceptibilities in deep gray matter nuclei. Additionally, whole-brain analysis using deformation and surface-based morphometry was performed. Least absolute shrinkage and selection operator regression was used to assess the association of regional volumes and susceptibilities with the UWDRS score. Results Twenty-nine participants with WD (mean age, 47 years ± 9 [standard deviation]; 15 women) and 26 controls (mean age, 45 years ± 12; 14 women) were evaluated. Whole-brain analysis demonstrated atrophy of the deep gray matter nuclei, brainstem, internal capsule, motor cortex and corticospinal pathway, and visual cortex and optic radiation in participants with WD (P < .05 at voxel level, corrected for family-wise error). The UWDRS score was negatively correlated with volumes of putamen (r = -0.63, P < .001), red nucleus (r = -0.58, P = .001), globus pallidus (r = -0.53, P = .003), and substantia nigra (r = -0.50, P = .006) but not with susceptibilities. Only the putaminal volume was identified as a stable factor associated with the UWDRS score (R2 = 0.38, P < .001) using least absolute shrinkage and selection operator regression. Conclusion Individuals with Wilson disease (WD) had widespread brain atrophy most pronounced in the central structures. The putaminal volume was associated with the Unified WD Rating Scale score and can be used as a surrogate imaging marker of clinical severity. © RSNA, 2021 Supplemental material is available for this article. See also the editorial by Du and Bydder in this issue.
- 650 _2
- $a atrofie $7 D001284
- 650 _2
- $a mozek $x diagnostické zobrazování $x metabolismus $x patologie $7 D001921
- 650 _2
- $a studie případů a kontrol $7 D016022
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a hepatolentikulární degenerace $x diagnostické zobrazování $x farmakoterapie $x metabolismus $x patologie $7 D006527
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a železo $x metabolismus $7 D007501
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a stupeň závažnosti nemoci $7 D012720
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lescinskij, Artem $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 700 1_
- $a Ruzicka, Filip $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 700 1_
- $a Acosta-Cabronero, Julio $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 700 1_
- $a Bruha, Radan $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 700 1_
- $a Sieger, Tomas $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 700 1_
- $a Hajek, Milan $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 700 1_
- $a Dezortova, Monika $u From the Department of Radiology (P.D., A.L.), Department of Neurology and Centre of Clinical Neuroscience (P.D., F.R.) and Fourth Department of Internal Medicine (R.B.), First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00, Prague 2, Czech Republic; Tenoke, Cambridge, England (J.A.C.); Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic (T.S.); and Magnetic Resonance Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (M.H., M.D.)
- 773 0_
- $w MED00004047 $t Radiology $x 1527-1315 $g Roč. 299, č. 3 (2021), s. 662-672
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33754827 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133609 $b ABA008
- 999 __
- $a ok $b bmc $g 1714647 $s 1146203
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 299 $c 3 $d 662-672 $e 20210323 $i 1527-1315 $m Radiology $n Radiology $x MED00004047
- LZP __
- $a Pubmed-20211013