-
Something wrong with this record ?
Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of gammaH2AX/53BP1 foci
L Jezkova, M Zadneprianetc, E Kulikova, E Smirnova, T Bulanova, D Depes, I Falkova, A Boreyko, E Krasavin, M Davidkova, S Kozubek, O Valentova, M Falk
Language English Country Great Britain
Grant support
NV16-29835A
MZ0
CEP Register
PubMed
29271466
DOI
10.1039/c7nr06829h
Knihovny.cz E-resources
- MeSH
- Tumor Suppressor p53-Binding Protein 1 * chemistry MeSH
- Apoptosis MeSH
- DNA Breaks, Double-Stranded * MeSH
- Fibroblasts radiation effects MeSH
- Fluorescent Antibody Technique MeSH
- Phosphorylation MeSH
- Histones * chemistry MeSH
- Radiation, Ionizing MeSH
- Microscopy, Confocal * MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Linear Energy Transfer * MeSH
- DNA Repair MeSH
- Check Tag
- Humans MeSH
Biological effects of high-LET (linear energy transfer) radiation have received increasing attention, particularly in the context of more efficient radiotherapy and space exploration. Efficient cell killing by high-LET radiation depends on the physical ability of accelerated particles to generate complex DNA damage, which is largely mediated by LET. However, the characteristics of DNA damage and repair upon exposure to different particles with similar LET parameters remain unexplored. We employed high-resolution confocal microscopy to examine phosphorylated histone H2AX (gammaH2AX)/p53-binding protein 1 (53BP1) focus streaks at the microscale level, focusing on the complexity, spatiotemporal behaviour and repair of DNA double-strand breaks generated by boron and neon ions accelerated at similar LET values (~135 keV mum
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22000770
- 003
- CZ-PrNML
- 005
- 20220404160715.0
- 007
- ta
- 008
- 220105s2018 xxk f 000 0|eng|e
- 009
- AR
- 024 7_
- $a 10.1039/c7nr06829h $2 doi
- 035 __
- $a (PubMed)29271466
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Jezkova L $u Jezkova, Lucie. Joint Institute for Nuclear Research, Dubna, Russia and University of Chemistry and Technology Prague, Prague, Czech Republic.
- 245 10
- $a Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of gammaH2AX/53BP1 foci / $c L Jezkova, M Zadneprianetc, E Kulikova, E Smirnova, T Bulanova, D Depes, I Falkova, A Boreyko, E Krasavin, M Davidkova, S Kozubek, O Valentova, M Falk
- 520 9_
- $a Biological effects of high-LET (linear energy transfer) radiation have received increasing attention, particularly in the context of more efficient radiotherapy and space exploration. Efficient cell killing by high-LET radiation depends on the physical ability of accelerated particles to generate complex DNA damage, which is largely mediated by LET. However, the characteristics of DNA damage and repair upon exposure to different particles with similar LET parameters remain unexplored. We employed high-resolution confocal microscopy to examine phosphorylated histone H2AX (gammaH2AX)/p53-binding protein 1 (53BP1) focus streaks at the microscale level, focusing on the complexity, spatiotemporal behaviour and repair of DNA double-strand breaks generated by boron and neon ions accelerated at similar LET values (~135 keV mum<ovid:sup>-1</ovid:sup>) and low energies (8 and 47 MeV per n, respectively). Cells were irradiated using sharp-angle geometry and were spatially (3D) fixed to maximize the resolution of these analyses. Both high-LET radiation types generated highly complex gammaH2AX/53BP1 focus clusters with a larger size, increased irregularity and slower elimination than low-LET gamma-rays. Surprisingly, neon ions produced even more complex gammaH2AX/53BP1 focus clusters than boron ions, consistent with DSB repair kinetics. Although the exposure of cells to gamma-rays and boron ions eliminated a vast majority of foci (94% and 74%, respectively) within 24 h, 45% of the foci persisted in cells irradiated with neon. Our calculations suggest that the complexity of DSB damage critically depends on (increases with) the particle track core diameter. Thus, different particles with similar LET and energy may generate different types of DNA damage, which should be considered in future research.
- 650 02
- $a apoptóza $7 D017209
- 650 02
- $a kultivované buňky $7 D002478
- 650 12
- $a dvouřetězcové zlomy DNA $7 D053903
- 650 02
- $a oprava DNA $7 D004260
- 650 02
- $a fibroblasty $x účinky záření $7 D005347
- 650 02
- $a fluorescenční protilátková technika $7 D005455
- 650 12
- $a histony $x chemie $7 D006657
- 650 02
- $a lidé $7 D006801
- 650 12
- $a lineární přenos energie $7 D018499
- 650 12
- $a konfokální mikroskopie $7 D018613
- 650 02
- $a fosforylace $7 D010766
- 650 02
- $a ionizující záření $7 D011839
- 650 12
- $a 53BP1 $x chemie $7 D000071857
- 700 1_
- $a Zadneprianetc M
- 700 1_
- $a Kulikova E
- 700 1_
- $a Smirnova E
- 700 1_
- $a Bulanova T
- 700 1_
- $a Depes D
- 700 1_
- $a Falkova I
- 700 1_
- $a Boreyko A
- 700 1_
- $a Krasavin E
- 700 1_
- $a Davidkova M
- 700 1_
- $a Kozubek S
- 700 1_
- $a Valentova O
- 700 1_
- $a Falk M
- 773 0_
- $t Nanoscale $g Roč. 10, č. 3 (2018), s. 1162-1179 $p Nanoscale $x 2040-3364 $w MED00183005
- 773 0_
- $p Nanoscale $g 10(3):1162-1179, 2018 Jan 18
- 910 __
- $a ABA008 $y p $b sig $z 0
- 990 __
- $a 20220105155854 $b ABA008
- 991 __
- $a 20220404160712 $b ABA008
- 999 __
- $a ok $b bmc $g 1742865 $s 1151916
- BAS __
- $a 3
- BMC __
- $a 2018 $b 10 $c 3 $d 1162-1179 $x MED00183005 $i 2040-3364 $m Nanoscale
- GRA __
- $a NV16-29835A $p MZ0
- LZP __
- $a 2021-granty