-
Je něco špatně v tomto záznamu ?
β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck
J. Wiedermannová, L. Krásný
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
34551438
DOI
10.1093/nar/gkab803
Knihovny.cz E-zdroje
- MeSH
- Archaea genetika MeSH
- Bacteria genetika MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- DNA metabolismus MeSH
- Eukaryota genetika MeSH
- exoribonukleasy metabolismus MeSH
- genetická transkripce MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle ('sitting duck') to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5'-3' RNA exonuclease (torpedo) latches itself onto the 5' end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5'-3' exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5'-3' exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003475
- 003
- CZ-PrNML
- 005
- 20220127150206.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkab803 $2 doi
- 035 __
- $a (PubMed)34551438
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Wiedermannová, Jana $u Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
- 245 10
- $a β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck / $c J. Wiedermannová, L. Krásný
- 520 9_
- $a During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle ('sitting duck') to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5'-3' RNA exonuclease (torpedo) latches itself onto the 5' end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5'-3' exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5'-3' exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
- 650 _2
- $a Archaea $x genetika $7 D001105
- 650 _2
- $a Bacteria $x genetika $7 D001419
- 650 _2
- $a DNA $x metabolismus $7 D004247
- 650 _2
- $a DNA řízené RNA-polymerasy $x metabolismus $7 D012321
- 650 _2
- $a Eukaryota $x genetika $7 D056890
- 650 _2
- $a exoribonukleasy $x metabolismus $7 D005095
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a genetická transkripce $7 D014158
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Krásný, Libor $u Department of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 49, č. 18 (2021), s. 10221-10234
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34551438 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127150203 $b ABA008
- 999 __
- $a ok $b bmc $g 1751049 $s 1154624
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 49 $c 18 $d 10221-10234 $e 20211011 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20220113