Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers

O. Groborz, K. Kolouchová, J. Pankrác, P. Keša, J. Kadlec, T. Krunclová, A. Pierzynová, J. Šrámek, M. Hovořáková, L. Dalecká, Z. Pavlíková, P. Matouš, P. Páral, L. Loukotová, P. Švec, H. Beneš, L. Štěpánek, D. Dunlop, CV. Melo, L. Šefc, T....

. 2022 ; 11 (22) : e2201344. [pub] 20221107

Language English Country Germany

Document type Journal Article

Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032824
003      
CZ-PrNML
005      
20250521104110.0
007      
ta
008      
230120s2022 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/adhm.202201344 $2 doi
035    __
$a (PubMed)36153823
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Groborz, Ondřej $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, Prague, 162 06, Czech Republic $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague, 160 00, Czech Republic $u Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, Prague 2, Prague, 120 00, Czech Republic $1 https://orcid.org/0000000231646168
245    10
$a Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers / $c O. Groborz, K. Kolouchová, J. Pankrác, P. Keša, J. Kadlec, T. Krunclová, A. Pierzynová, J. Šrámek, M. Hovořáková, L. Dalecká, Z. Pavlíková, P. Matouš, P. Páral, L. Loukotová, P. Švec, H. Beneš, L. Štěpánek, D. Dunlop, CV. Melo, L. Šefc, T. Slanina, J. Beneš, S. Van Vlierberghe, R. Hoogenboom, M. Hrubý
520    9_
$a Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.
650    _2
$a myši $7 D051379
650    _2
$a zvířata $7 D000818
650    12
$a polymery $7 D011108
650    _2
$a tkáňová distribuce $7 D014018
650    _2
$a teplota $7 D013696
650    _2
$a uvolňování léčiv $7 D065546
650    12
$a voda $7 D014867
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kolouchová, Kristýna $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, Prague, 162 06, Czech Republic $u Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium $1 https://orcid.org/0000000288748632
700    1_
$a Pankrác, Jan $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Prague, 120 00, Czech Republic $1 https://orcid.org/0000000295741391
700    1_
$a Keša, Peter $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Prague, 120 00, Czech Republic $u FUJIFILM VisualSonics, Inc., Joop Geesinkweg 140 1114 AB, Amsterdam, The Netherlands $1 https://orcid.org/0000000238905409 $7 xx0282387
700    1_
$a Kadlec, Jan $u Weizmann Institute of Science, Department of Brain Sciences, Rehovot, 7610001, Israel $1 https://orcid.org/0000000324773633
700    1_
$a Krunclová, Tereza $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, Prague, 162 06, Czech Republic $1 https://orcid.org/0000000252328214
700    1_
$a Pierzynová, Aneta $u Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, Prague 2, Prague, 128 00, Czech Republic $1 https://orcid.org/000000033770782X
700    1_
$a Šrámek, Jaromír $u Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, Prague 2, Prague, 128 00, Czech Republic $1 https://orcid.org/0000000302878936
700    1_
$a Hovořáková, Mária $u Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, Prague 2, Prague, 128 00, Czech Republic $1 https://orcid.org/0000000263466671
700    1_
$a Dalecká, Linda $u Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, Prague 2, Prague, 128 00, Czech Republic $1 https://orcid.org/0000000305122122
700    1_
$a Pavlíková, Zuzana $u Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, Prague 2, Prague, 128 00, Czech Republic $1 https://orcid.org/0000000198903272
700    1_
$a Matouš, Petr $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Prague, 120 00, Czech Republic $7 xx0332461
700    1_
$a Páral, Petr $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Prague, 120 00, Czech Republic $1 https://orcid.org/0000000323089688
700    1_
$a Loukotová, Lenka $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague, 160 00, Czech Republic $1 https://orcid.org/0000000280871425
700    1_
$a Švec, Pavel $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague, 160 00, Czech Republic $1 https://orcid.org/0000000266042815
700    1_
$a Beneš, Hynek $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, Prague, 162 06, Czech Republic $1 https://orcid.org/0000000268611997 $7 xx0326041
700    1_
$a Štěpánek, Lubomír $u Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, Prague 2, Prague, 120 00, Czech Republic
700    1_
$a Dunlop, David $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague, 160 00, Czech Republic $1 https://orcid.org/0000000153517036
700    1_
$a Melo, Carlos V $u Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, Prague 2, Prague, 128 00, Czech Republic
700    1_
$a Šefc, Luděk $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Prague, 120 00, Czech Republic $1 https://orcid.org/000000032846220X
700    1_
$a Slanina, Tomáš $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague, 160 00, Czech Republic $1 https://orcid.org/0000000180927268
700    1_
$a Beneš, Jiří $u Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, Prague 2, Prague, 120 00, Czech Republic $1 https://orcid.org/0000000302860138
700    1_
$a Van Vlierberghe, Sandra $u Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium $1 https://orcid.org/0000000176881682
700    1_
$a Hoogenboom, Richard $u Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium $1 https://orcid.org/0000000173982058
700    1_
$a Hrubý, Martin $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, Prague, 162 06, Czech Republic $1 https://orcid.org/000000025075261X
773    0_
$w MED00189489 $t Advanced healthcare materials $x 2192-2659 $g Roč. 11, č. 22 (2022), s. e2201344
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36153823 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20250521104108 $b ABA008
999    __
$a ok $b bmc $g 1891517 $s 1184159
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 11 $c 22 $d e2201344 $e 20221107 $i 2192-2659 $m Advanced healthcare materials $n Adv Healthc Mater $x MED00189489
LZP    __
$a Pubmed-20230120

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...