• Something wrong with this record ?

A single amino acid deletion in the ER Ca2+ sensor STIM1 reverses the in vitro and in vivo effects of the Stormorken syndrome-causing R304W mutation

TH. Gamage, H. Grabmayr, F. Horvath, M. Fahrner, D. Misceo, WE. Louch, G. Gunnes, H. Pullisaar, JE. Reseland, SP. Lyngstadaas, A. Holmgren, SS. Amundsen, P. Rathner, L. Cerofolini, E. Ravera, H. Krobath, C. Luchinat, T. Renger, N. Müller, C....

. 2023 ; 16 (771) : eadd0509. [pub] 20230207

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23004231
003      
CZ-PrNML
005      
20230425141224.0
007      
ta
008      
230418s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1126/scisignal.add0509 $2 doi
035    __
$a (PubMed)36749824
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Gamage, Thilini H $u Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway $1 https://orcid.org/0000000317272451
245    12
$a A single amino acid deletion in the ER Ca2+ sensor STIM1 reverses the in vitro and in vivo effects of the Stormorken syndrome-causing R304W mutation / $c TH. Gamage, H. Grabmayr, F. Horvath, M. Fahrner, D. Misceo, WE. Louch, G. Gunnes, H. Pullisaar, JE. Reseland, SP. Lyngstadaas, A. Holmgren, SS. Amundsen, P. Rathner, L. Cerofolini, E. Ravera, H. Krobath, C. Luchinat, T. Renger, N. Müller, C. Romanin, E. Frengen
520    9_
$a Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.
650    _2
$a myši $7 D051379
650    _2
$a zvířata $7 D000818
650    12
$a membránové proteiny $x metabolismus $7 D008565
650    _2
$a vápníkové kanály $x metabolismus $7 D015220
650    _2
$a aminokyseliny $x metabolismus $7 D000596
650    _2
$a mutace $7 D009154
650    _2
$a endoplazmatické retikulum $x metabolismus $7 D004721
650    _2
$a protein STIM1 $x genetika $7 D000071737
650    12
$a kanály aktivované uvolněním vápníku $x genetika $7 D000071739
650    _2
$a protein ORAI1 $x metabolismus $7 D000071740
650    _2
$a vápník $x metabolismus $7 D002118
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Grabmayr, Herwig $u Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria $1 https://orcid.org/0000000308705833
700    1_
$a Horvath, Ferdinand $u Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria $1 https://orcid.org/0000000244413195
700    1_
$a Fahrner, Marc $u Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria $1 https://orcid.org/0000000226890158
700    1_
$a Misceo, Doriana $u Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway $1 https://orcid.org/0000000265945801
700    1_
$a Louch, William Edward $u Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway $1 https://orcid.org/0000000205116112
700    1_
$a Gunnes, Gjermund $u Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway $1 https://orcid.org/0000000279001027
700    1_
$a Pullisaar, Helen $u Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway $1 https://orcid.org/0000000251174604
700    1_
$a Reseland, Janne Elin $u Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway $1 https://orcid.org/0000000157434297
700    1_
$a Lyngstadaas, Staale Petter $u Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway $1 https://orcid.org/0000000263617644
700    1_
$a Holmgren, Asbjørn $u Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway $1 https://orcid.org/0000000314340957
700    1_
$a Amundsen, Silja S $u Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
700    1_
$a Rathner, Petr $u Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria $u Institut für Analytische Chemie, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
700    1_
$a Cerofolini, Linda $u Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy $1 https://orcid.org/0000000207959594
700    1_
$a Ravera, Enrico $u Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy $u Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy $1 https://orcid.org/0000000177089208 $7 ntk2017966790
700    1_
$a Krobath, Heinrich $u Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria $1 https://orcid.org/0000000164738109
700    1_
$a Luchinat, Claudio $u Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy $u CERM, University of Florence, 50019 Sesto Fiorentino, Italy $1 https://orcid.org/0000000322718921 $7 ntk2017966822
700    1_
$a Renger, Thomas $u Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria $1 https://orcid.org/0000000192453805
700    1_
$a Müller, Norbert $u Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria $u Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic $u Institute of Biochemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria $1 https://orcid.org/0000000276213980 $7 jcu2012738279
700    1_
$a Romanin, Christoph $u Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria $1 https://orcid.org/0000000337564136
700    1_
$a Frengen, Eirik $u Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway $1 https://orcid.org/0000000283872247
773    0_
$w MED00190083 $t Science signaling $x 1937-9145 $g Roč. 16, č. 771 (2023), s. eadd0509
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36749824 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230418 $b ABA008
991    __
$a 20230425141221 $b ABA008
999    __
$a ok $b bmc $g 1924727 $s 1190440
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 16 $c 771 $d eadd0509 $e 20230207 $i 1937-9145 $m Science signaling $n Sci Signal $x MED00190083
LZP    __
$a Pubmed-20230418

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...