-
Je něco špatně v tomto záznamu ?
Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression
J. Dudášová, Z. Valenta, JR. Sachs
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
BioMedCentral
od 2001-12-01
BioMedCentral Open Access
od 2001
Directory of Open Access Journals
od 2001
Free Medical Journals
od 2001
PubMed Central
od 2001
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Medline Complete (EBSCOhost)
od 2001-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
Springer Nature OA/Free Journals
od 2001-12-01
- MeSH
- demografie statistika a číselné údaje MeSH
- klinické zkoušky, fáze III jako téma statistika a číselné údaje metody MeSH
- lidé MeSH
- logistické modely MeSH
- počítačová simulace MeSH
- randomizované kontrolované studie jako téma statistika a číselné údaje metody MeSH
- účinnost vakcíny * statistika a číselné údaje MeSH
- vakcinace statistika a číselné údaje metody MeSH
- vakcíny terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities. METHODS: This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome. RESULTS: Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy. CONCLUSIONS: This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.
1st Faculty of Medicine Charles University Prague Czech Republic
Quantitative Pharmacology and Pharmacometrics Merck and Co Inc Rahway NJ USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24014229
- 003
- CZ-PrNML
- 005
- 20240905133846.0
- 007
- ta
- 008
- 240725s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12874-024-02197-3 $2 doi
- 035 __
- $a (PubMed)38689224
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Dudášová, Julie $u Quantitative Pharmacology and Pharmacometrics, MSD Czech Republic, Svornosti 3321/2, 150 00 Prague 5, Prague, Czech Republic. julie.dudasova@merck.com $u First Faculty of Medicine, Charles University, Prague, Czech Republic. julie.dudasova@merck.com $1 https://orcid.org/000000019980767X
- 245 10
- $a Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression / $c J. Dudášová, Z. Valenta, JR. Sachs
- 520 9_
- $a BACKGROUND: Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities. METHODS: This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome. RESULTS: Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy. CONCLUSIONS: This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a logistické modely $7 D016015
- 650 12
- $a účinnost vakcíny $x statistika a číselné údaje $7 D000087507
- 650 _2
- $a randomizované kontrolované studie jako téma $x statistika a číselné údaje $x metody $7 D016032
- 650 _2
- $a vakcinace $x statistika a číselné údaje $x metody $7 D014611
- 650 _2
- $a vakcíny $x terapeutické užití $7 D014612
- 650 _2
- $a demografie $x statistika a číselné údaje $7 D003710
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a klinické zkoušky, fáze III jako téma $x statistika a číselné údaje $x metody $7 D017326
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Valenta, Zdeněk $u Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000171199764
- 700 1_
- $a Sachs, Jeffrey R $u Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc, Rahway, NJ, USA $1 https://orcid.org/000000015725558X
- 773 0_
- $w MED00006775 $t BMC medical research methodology $x 1471-2288 $g Roč. 24, č. 1 (2024), s. 101
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38689224 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905133840 $b ABA008
- 999 __
- $a ok $b bmc $g 2143803 $s 1226095
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 24 $c 1 $d 101 $e 20240430 $i 1471-2288 $m BMC medical research methodology $n BMC Med Res Methodol $x MED00006775
- LZP __
- $a Pubmed-20240725