Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression

J. Dudášová, Z. Valenta, JR. Sachs

. 2024 ; 24 (1) : 101. [pub] 20240430

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc24014229

BACKGROUND: Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities. METHODS: This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome. RESULTS: Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy. CONCLUSIONS: This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24014229
003      
CZ-PrNML
005      
20240905133846.0
007      
ta
008      
240725s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12874-024-02197-3 $2 doi
035    __
$a (PubMed)38689224
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Dudášová, Julie $u Quantitative Pharmacology and Pharmacometrics, MSD Czech Republic, Svornosti 3321/2, 150 00 Prague 5, Prague, Czech Republic. julie.dudasova@merck.com $u First Faculty of Medicine, Charles University, Prague, Czech Republic. julie.dudasova@merck.com $1 https://orcid.org/000000019980767X
245    10
$a Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression / $c J. Dudášová, Z. Valenta, JR. Sachs
520    9_
$a BACKGROUND: Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities. METHODS: This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome. RESULTS: Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy. CONCLUSIONS: This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.
650    _2
$a lidé $7 D006801
650    _2
$a logistické modely $7 D016015
650    12
$a účinnost vakcíny $x statistika a číselné údaje $7 D000087507
650    _2
$a randomizované kontrolované studie jako téma $x statistika a číselné údaje $x metody $7 D016032
650    _2
$a vakcinace $x statistika a číselné údaje $x metody $7 D014611
650    _2
$a vakcíny $x terapeutické užití $7 D014612
650    _2
$a demografie $x statistika a číselné údaje $7 D003710
650    _2
$a počítačová simulace $7 D003198
650    _2
$a klinické zkoušky, fáze III jako téma $x statistika a číselné údaje $x metody $7 D017326
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Valenta, Zdeněk $u Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000171199764
700    1_
$a Sachs, Jeffrey R $u Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc, Rahway, NJ, USA $1 https://orcid.org/000000015725558X
773    0_
$w MED00006775 $t BMC medical research methodology $x 1471-2288 $g Roč. 24, č. 1 (2024), s. 101
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38689224 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240725 $b ABA008
991    __
$a 20240905133840 $b ABA008
999    __
$a ok $b bmc $g 2143803 $s 1226095
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 24 $c 1 $d 101 $e 20240430 $i 1471-2288 $m BMC medical research methodology $n BMC Med Res Methodol $x MED00006775
LZP    __
$a Pubmed-20240725

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...