-
Something wrong with this record ?
The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly
J. Chen, J. Bartoš, A. Boudichevskaia, A. Voigt, MT. Rabanus-Wallace, S. Dreissig, Z. Tulpová, H. Šimková, J. Macas, G. Kim, J. Buhl, K. Bürstenbinder, FR. Blattner, J. Fuchs, T. Schmutzer, A. Himmelbach, V. Schubert, A. Houben
Language English Country England, Great Britain
Document type Journal Article
Grant support
HO1779/30-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
HO1779/30-2
Deutsche Forschungsgemeinschaft (German Research Foundation)
HO1779/34-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
NLK
Directory of Open Access Journals
from 2015
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2015-01-01
Open Access Digital Library
from 2015-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
- MeSH
- Aegilops genetics metabolism MeSH
- Chromosomes, Plant * genetics MeSH
- Karyotyping MeSH
- Mitosis * genetics MeSH
- Nondisjunction, Genetic MeSH
- Pollen genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Genes, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Secale * genetics MeSH
- Publication type
- Journal Article MeSH
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Department of Molecular Signal Processing Leibniz Institute of Plant Biochemistry Halle Germany
Institute of Biology Department of Plant Cell Biology Philipps University Marburg Marburg Germany
KWS SAAT SE and Co KGaA Einbeck Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003495
- 003
- CZ-PrNML
- 005
- 20250206104357.0
- 007
- ta
- 008
- 250121s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-024-53799-w $2 doi
- 035 __
- $a (PubMed)39516474
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Chen, Jianyong $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. chenj@ipk-gatersleben.de
- 245 14
- $a The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly / $c J. Chen, J. Bartoš, A. Boudichevskaia, A. Voigt, MT. Rabanus-Wallace, S. Dreissig, Z. Tulpová, H. Šimková, J. Macas, G. Kim, J. Buhl, K. Bürstenbinder, FR. Blattner, J. Fuchs, T. Schmutzer, A. Himmelbach, V. Schubert, A. Houben
- 520 9_
- $a The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
- 650 12
- $a žito $x genetika $7 D012434
- 650 12
- $a chromozomy rostlin $x genetika $7 D032461
- 650 12
- $a mitóza $x genetika $7 D008938
- 650 _2
- $a pyl $x genetika $7 D011058
- 650 _2
- $a rostlinné proteiny $x genetika $x metabolismus $7 D010940
- 650 _2
- $a Aegilops $x genetika $x metabolismus $7 D000078065
- 650 _2
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a karyotypizace $7 D007621
- 650 _2
- $a nondisjunkce genetická $7 D009630
- 650 _2
- $a rostlinné geny $7 D017343
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Bartoš, Jan $u Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic $1 https://orcid.org/0000000241548895
- 700 1_
- $a Boudichevskaia, Anastassia $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany $u KWS SAAT SE & Co. KGaA, Einbeck, Germany $1 https://orcid.org/0000000162859986
- 700 1_
- $a Voigt, Anna $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- 700 1_
- $a Rabanus-Wallace, Mark Timothy $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany $u School of Agriculture, Forestry, and Ecosystem Science (SAFES), The University of Melbourne, Parkville, VIC, Australia $1 https://orcid.org/000000024663985X
- 700 1_
- $a Dreissig, Steven $u Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- 700 1_
- $a Tulpová, Zuzana $u Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic $1 https://orcid.org/0000000244039367
- 700 1_
- $a Šimková, Hana $u Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic $1 https://orcid.org/0000000341597619 $7 xx0221902
- 700 1_
- $a Macas, Jiří $u Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic $1 https://orcid.org/0000000308291570 $7 xx0060672
- 700 1_
- $a Kim, Gihwan $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany $1 https://orcid.org/0000000246211570
- 700 1_
- $a Buhl, Jonas $u Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany $u Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
- 700 1_
- $a Bürstenbinder, Katharina $u Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany $u Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
- 700 1_
- $a Blattner, Frank R $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany $1 https://orcid.org/0000000177317741
- 700 1_
- $a Fuchs, Jörg $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany $1 https://orcid.org/0000000341715371
- 700 1_
- $a Schmutzer, Thomas $u Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany $1 https://orcid.org/0000000310736719
- 700 1_
- $a Himmelbach, Axel $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- 700 1_
- $a Schubert, Veit $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany $1 https://orcid.org/0000000230720485
- 700 1_
- $a Houben, Andreas $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. houben@ipk-gatersleben.de $1 https://orcid.org/000000033419239X
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 15, č. 1 (2024), s. 9686
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39516474 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104353 $b ABA008
- 999 __
- $a ok $b bmc $g 2263327 $s 1239502
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 15 $c 1 $d 9686 $e 20241108 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- GRA __
- $a HO1779/30-1 $p Deutsche Forschungsgemeinschaft (German Research Foundation)
- GRA __
- $a HO1779/30-2 $p Deutsche Forschungsgemeinschaft (German Research Foundation)
- GRA __
- $a HO1779/34-1 $p Deutsche Forschungsgemeinschaft (German Research Foundation)
- LZP __
- $a Pubmed-20250121