-
Je něco špatně v tomto záznamu ?
IDH Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique
V. Sedlák, M. Němý, M. Májovský, A. Bubeníková, LE. Nordin, T. Moravec, J. Engelová, D. Sila, D. Konečná, T. Belšan, E. Westman, D. Netuka
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
PubMed
39779292
DOI
10.3174/ajnr.a8432
Knihovny.cz E-zdroje
- MeSH
- difuzní magnetická rezonance metody MeSH
- dospělí MeSH
- gliom * diagnostické zobrazování patologie MeSH
- isocitrátdehydrogenasa * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mutace MeSH
- nádory mozku * diagnostické zobrazování patologie MeSH
- prospektivní studie MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- stupeň nádoru MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the IDH mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization. MATERIALS AND METHODS: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the IDH status and histologic grade of adult-type diffuse gliomas. Patients with histologically confirmed adult-type diffuse glioma underwent a multiparametric MRI examination using a 3T system, which included a multishell diffusion sequence. Advanced diffusion parameters were obtained using SMT, diffusional kurtosis imaging, and ADC modeling. The diagnostic performance of studied parameters was evaluated by plotting receiver operating characteristic curves with associated area under curve, specificity, and sensitivity values. RESULTS: A total of 80 patients with a mean age of 48 (SD, 16) years were included in the study. SMT metrics, particularly microscopic fractional anisotropy (μFA), intraneurite voxel fraction, and μFA to the third power (μFA3), demonstrated strong diagnostic performance (all AUC = 0.905, 95% CI, 0.835-0.976; P < .001) in determining IDH status and compared favorably with diffusional kurtosis imaging and ADC models. These parameters also showed a strong predictive capability for tumor grade, with intraneurite voxel fraction and μFA achieving the highest diagnostic accuracy (AUC = 0.937, 95% CI, 0.880-0.993; P < .001). Control analyses on normal-appearing brain tissue confirmed the specificity of these metrics for tumor tissue. CONCLUSIONS: Our study highlights the potential of SMT for noninvasive characterization of adult-type diffuse gliomas, with a potential to predict IDH status and tumor grade more accurately than traditional ADC metrics. SMT offers a promising addition to the current diagnostic toolkit, enabling more precise preoperative assessments and contributing to personalized treatment planning.
Department of Diagnostic Medical Physics Karolinska University Hospital Solna Stockholm Sweden
Department of Neurosurgery and Spine Surgery Arberlandklinik Viechtach Germany
From the Department of Radiology Military University Hospital Prague Czech Republic
Radiodiagnostic Department Proton Therapy Center Czech Ltd Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010308
- 003
- CZ-PrNML
- 005
- 20250429135017.0
- 007
- ta
- 008
- 250415s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3174/ajnr.A8432 $2 doi
- 035 __
- $a (PubMed)39779292
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Sedlák, Vojtěch $u From the Department of Radiology (V.S., T.B.), Military University Hospital, Prague, Czech Republic
- 245 10
- $a IDH Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique / $c V. Sedlák, M. Němý, M. Májovský, A. Bubeníková, LE. Nordin, T. Moravec, J. Engelová, D. Sila, D. Konečná, T. Belšan, E. Westman, D. Netuka
- 520 9_
- $a BACKGROUND AND PURPOSE: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the IDH mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization. MATERIALS AND METHODS: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the IDH status and histologic grade of adult-type diffuse gliomas. Patients with histologically confirmed adult-type diffuse glioma underwent a multiparametric MRI examination using a 3T system, which included a multishell diffusion sequence. Advanced diffusion parameters were obtained using SMT, diffusional kurtosis imaging, and ADC modeling. The diagnostic performance of studied parameters was evaluated by plotting receiver operating characteristic curves with associated area under curve, specificity, and sensitivity values. RESULTS: A total of 80 patients with a mean age of 48 (SD, 16) years were included in the study. SMT metrics, particularly microscopic fractional anisotropy (μFA), intraneurite voxel fraction, and μFA to the third power (μFA3), demonstrated strong diagnostic performance (all AUC = 0.905, 95% CI, 0.835-0.976; P < .001) in determining IDH status and compared favorably with diffusional kurtosis imaging and ADC models. These parameters also showed a strong predictive capability for tumor grade, with intraneurite voxel fraction and μFA achieving the highest diagnostic accuracy (AUC = 0.937, 95% CI, 0.880-0.993; P < .001). Control analyses on normal-appearing brain tissue confirmed the specificity of these metrics for tumor tissue. CONCLUSIONS: Our study highlights the potential of SMT for noninvasive characterization of adult-type diffuse gliomas, with a potential to predict IDH status and tumor grade more accurately than traditional ADC metrics. SMT offers a promising addition to the current diagnostic toolkit, enabling more precise preoperative assessments and contributing to personalized treatment planning.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a gliom $x diagnostické zobrazování $x patologie $7 D005910
- 650 12
- $a nádory mozku $x diagnostické zobrazování $x patologie $7 D001932
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a isocitrátdehydrogenasa $x genetika $7 D007521
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a stupeň nádoru $7 D060787
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a difuzní magnetická rezonance $x metody $7 D038524
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Němý, Milan $u Division of Clinical Geriatrics (M.N., L.E.N., E.W.), Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden $u Department of Biomedical Engineering and Assistive Technology (M.N.), Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000248701354
- 700 1_
- $a Májovský, Martin $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic martin.majovsky@uvn.cz $1 https://orcid.org/0000000177255181 $7 xx0228525
- 700 1_
- $a Bubeníková, Adéla $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
- 700 1_
- $a Nordin, Love Engstrom $u Division of Clinical Geriatrics (M.N., L.E.N., E.W.), Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden $u Department of Diagnostic Medical Physics (L.E.N.), Karolinska University Hospital Solna, Stockholm, Sweden $1 https://orcid.org/0000000296858583
- 700 1_
- $a Moravec, Tomáš $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
- 700 1_
- $a Engelová, Jana $u Radiodiagnostic Department (J.E.), Proton Therapy Center Czech Ltd, Prague, Czech Republic
- 700 1_
- $a Sila, Dalibor $u Department of Neurosurgery and Spine Surgery (D.S.), Arberlandklinik Viechtach, Germany
- 700 1_
- $a Konečná, Dora $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
- 700 1_
- $a Belšan, Tomáš $u From the Department of Radiology (V.S., T.B.), Military University Hospital, Prague, Czech Republic
- 700 1_
- $a Westman, Eric $u Division of Clinical Geriatrics (M.N., L.E.N., E.W.), Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden $u Department of Neuroimaging (E.W.), Centre for Neuroimaging Science, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK $1 https://orcid.org/0000000231152977
- 700 1_
- $a Netuka, David $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
- 773 0_
- $w MED00009116 $t American journal of neuroradiology $x 1936-959X $g Roč. 46, č. 1 (2025), s. 121-128
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39779292 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135012 $b ABA008
- 999 __
- $a ok $b bmc $g 2311584 $s 1247389
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 46 $c 1 $d 121-128 $e 20250108 $i 1936-959X $m American journal of neuroradiology $n AJNR Am J Neuroradiol $x MED00009116
- LZP __
- $a Pubmed-20250415