• Je něco špatně v tomto záznamu ?

IDH Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique

V. Sedlák, M. Němý, M. Májovský, A. Bubeníková, LE. Nordin, T. Moravec, J. Engelová, D. Sila, D. Konečná, T. Belšan, E. Westman, D. Netuka

. 2025 ; 46 (1) : 121-128. [pub] 20250108

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010308

BACKGROUND AND PURPOSE: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the IDH mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization. MATERIALS AND METHODS: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the IDH status and histologic grade of adult-type diffuse gliomas. Patients with histologically confirmed adult-type diffuse glioma underwent a multiparametric MRI examination using a 3T system, which included a multishell diffusion sequence. Advanced diffusion parameters were obtained using SMT, diffusional kurtosis imaging, and ADC modeling. The diagnostic performance of studied parameters was evaluated by plotting receiver operating characteristic curves with associated area under curve, specificity, and sensitivity values. RESULTS: A total of 80 patients with a mean age of 48 (SD, 16) years were included in the study. SMT metrics, particularly microscopic fractional anisotropy (μFA), intraneurite voxel fraction, and μFA to the third power (μFA3), demonstrated strong diagnostic performance (all AUC = 0.905, 95% CI, 0.835-0.976; P < .001) in determining IDH status and compared favorably with diffusional kurtosis imaging and ADC models. These parameters also showed a strong predictive capability for tumor grade, with intraneurite voxel fraction and μFA achieving the highest diagnostic accuracy (AUC = 0.937, 95% CI, 0.880-0.993; P < .001). Control analyses on normal-appearing brain tissue confirmed the specificity of these metrics for tumor tissue. CONCLUSIONS: Our study highlights the potential of SMT for noninvasive characterization of adult-type diffuse gliomas, with a potential to predict IDH status and tumor grade more accurately than traditional ADC metrics. SMT offers a promising addition to the current diagnostic toolkit, enabling more precise preoperative assessments and contributing to personalized treatment planning.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010308
003      
CZ-PrNML
005      
20250429135017.0
007      
ta
008      
250415s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.3174/ajnr.A8432 $2 doi
035    __
$a (PubMed)39779292
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sedlák, Vojtěch $u From the Department of Radiology (V.S., T.B.), Military University Hospital, Prague, Czech Republic
245    10
$a IDH Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique / $c V. Sedlák, M. Němý, M. Májovský, A. Bubeníková, LE. Nordin, T. Moravec, J. Engelová, D. Sila, D. Konečná, T. Belšan, E. Westman, D. Netuka
520    9_
$a BACKGROUND AND PURPOSE: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the IDH mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization. MATERIALS AND METHODS: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the IDH status and histologic grade of adult-type diffuse gliomas. Patients with histologically confirmed adult-type diffuse glioma underwent a multiparametric MRI examination using a 3T system, which included a multishell diffusion sequence. Advanced diffusion parameters were obtained using SMT, diffusional kurtosis imaging, and ADC modeling. The diagnostic performance of studied parameters was evaluated by plotting receiver operating characteristic curves with associated area under curve, specificity, and sensitivity values. RESULTS: A total of 80 patients with a mean age of 48 (SD, 16) years were included in the study. SMT metrics, particularly microscopic fractional anisotropy (μFA), intraneurite voxel fraction, and μFA to the third power (μFA3), demonstrated strong diagnostic performance (all AUC = 0.905, 95% CI, 0.835-0.976; P < .001) in determining IDH status and compared favorably with diffusional kurtosis imaging and ADC models. These parameters also showed a strong predictive capability for tumor grade, with intraneurite voxel fraction and μFA achieving the highest diagnostic accuracy (AUC = 0.937, 95% CI, 0.880-0.993; P < .001). Control analyses on normal-appearing brain tissue confirmed the specificity of these metrics for tumor tissue. CONCLUSIONS: Our study highlights the potential of SMT for noninvasive characterization of adult-type diffuse gliomas, with a potential to predict IDH status and tumor grade more accurately than traditional ADC metrics. SMT offers a promising addition to the current diagnostic toolkit, enabling more precise preoperative assessments and contributing to personalized treatment planning.
650    _2
$a lidé $7 D006801
650    12
$a gliom $x diagnostické zobrazování $x patologie $7 D005910
650    12
$a nádory mozku $x diagnostické zobrazování $x patologie $7 D001932
650    _2
$a lidé středního věku $7 D008875
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a prospektivní studie $7 D011446
650    _2
$a dospělí $7 D000328
650    12
$a isocitrátdehydrogenasa $x genetika $7 D007521
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a senioři $7 D000368
650    _2
$a stupeň nádoru $7 D060787
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mutace $7 D009154
650    _2
$a difuzní magnetická rezonance $x metody $7 D038524
655    _2
$a časopisecké články $7 D016428
700    1_
$a Němý, Milan $u Division of Clinical Geriatrics (M.N., L.E.N., E.W.), Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden $u Department of Biomedical Engineering and Assistive Technology (M.N.), Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000248701354
700    1_
$a Májovský, Martin $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic martin.majovsky@uvn.cz $1 https://orcid.org/0000000177255181 $7 xx0228525
700    1_
$a Bubeníková, Adéla $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
700    1_
$a Nordin, Love Engstrom $u Division of Clinical Geriatrics (M.N., L.E.N., E.W.), Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden $u Department of Diagnostic Medical Physics (L.E.N.), Karolinska University Hospital Solna, Stockholm, Sweden $1 https://orcid.org/0000000296858583
700    1_
$a Moravec, Tomáš $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
700    1_
$a Engelová, Jana $u Radiodiagnostic Department (J.E.), Proton Therapy Center Czech Ltd, Prague, Czech Republic
700    1_
$a Sila, Dalibor $u Department of Neurosurgery and Spine Surgery (D.S.), Arberlandklinik Viechtach, Germany
700    1_
$a Konečná, Dora $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
700    1_
$a Belšan, Tomáš $u From the Department of Radiology (V.S., T.B.), Military University Hospital, Prague, Czech Republic
700    1_
$a Westman, Eric $u Division of Clinical Geriatrics (M.N., L.E.N., E.W.), Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden $u Department of Neuroimaging (E.W.), Centre for Neuroimaging Science, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK $1 https://orcid.org/0000000231152977
700    1_
$a Netuka, David $u Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
773    0_
$w MED00009116 $t American journal of neuroradiology $x 1936-959X $g Roč. 46, č. 1 (2025), s. 121-128
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39779292 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135012 $b ABA008
999    __
$a ok $b bmc $g 2311584 $s 1247389
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 46 $c 1 $d 121-128 $e 20250108 $i 1936-959X $m American journal of neuroradiology $n AJNR Am J Neuroradiol $x MED00009116
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...