• This record comes from PubMed

The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK

. 2005 Feb ; 14 (2) : 445-51. [epub] 20050104

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Molecular dynamics (MD) simulations were used to explain structural details of cyclin-dependent kinase-2 (CDK2) inhibition by phosphorylation at T14 and/or Y15 located in the glycine-rich loop (G-loop). Ten-nanosecond-long simulations of fully active CDK2 in a complex with a short peptide (HHASPRK) substrate and of CDK2 inhibited by phosphorylation of T14 and/or Y15 were produced. The inhibitory phosphorylations at T14 and/or Y15 show namely an ATP misalignment and a G-loop shift (~5 A) causing the opening of the substrate binding box. The biological functions of the G-loop and GxGxxG motif evolutionary conservation in protein kinases are discussed. The position of the ATP gamma-phosphate relative to the phosphorylation site (S/T) of the peptide substrate in the active CDK2 is described and compared with inhibited forms of CDK2. The MD results clearly provide an explanation previously not known as to why a basic residue (R/K) is preferred at the P(2) position in phosphorylated S/T peptide substrates.

See more in PubMed

Aimes, R.T., Hemmer, W., and Taylor, S.S. 2000. Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: Role in catalysis, P-site specificity, and interaction with inhibitors. Biochemistry 39 8325–8332. PubMed

Bártová, I., Otyepka, M., Kříž, Z., and Koča, J. 2004. Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; A molecular dynamics study reveals the functional importance of the glycine-rich loop. Protein Sci. 13 1449–1457. PubMed PMC

Brown, N.R., Noble, M.E.M., Endicott, J.A., and Johnson, L.N. 1999. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1 438–443. PubMed

Cook, A., Lowe, E.D., Chrysina, E.D., Skamnaki, V.T., Oikonomakos, N.G., and Johnson, L.N. 2002. Structural studies on phospho-CDK2/Cyclin A bound to nitrate, a transition state analogue: Implications for the protein kinase mechanism. Biochemistry 41 7301–7311. PubMed

Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, J.K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. 1995. A 2nd generation force-field for simulation of proteins, nucleic-acids and organic-molecules. J. Am. Chem. Soc. 117 5179–5197.

Coulonval, K., Bockstaele, L., Paternot, S., and Roger, P.P. 2003. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J. Biol. Chem. 278 52052–52061. PubMed

Davies, T.G., Pratt, D.J., Endicott, J.A., Johnson, L.N., and Noble, M.E.M. 2002. Structure-based design of cyclin-dependent kinase inhibitors. Pharm. Ther. 93 125–133. PubMed

Endicott, J.A., Noble, M.E.M., and Tucker, J.A. 1999. Cyclin-dependent kinases: Inhibition and substrate recognition. Curr. Opin. Struct. Biol. 9 738–744. PubMed

Fischer, P.M., Endicott, J., and Meijer, L. 2003. Cyclin-dependent kinase inhibitors. Prog. Cell Cycle Res. 5 235–248. PubMed

Grant, B.D., Tsigelny, I., Adams, J.A., and Taylor, S.S. 1996. Examination of an active-site electrostatic node in the cAMP-dependent protein kinase catalytic subunit. Protein Sci. 5 1316–1324. PubMed PMC

Hanks, S. and Quinn, A.M. 1991. Protein kinase catalytic domain sequence database: Identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200 38–62. PubMed

Hemmer, W., McGlone, M., Tsigelny, I., and Taylor, S.S. 1997. Role of the glycine triad in the ATP-binding site of cAMP-dependent protein kinase. J. Biol. Chem. 272 16946–16954. PubMed

Holmes, J.K. and Solomon, M.K. 1996. A predictive scale for evaluation cyclin-dependent kinase substrates; A comparison of p34cdc2 and p33cdk2. J. Biol. Chem. 271 25240–25246. PubMed

Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N.P. 1995. Mechanism of cdk activation revealed by the structure of a cyclin A-–cdk2 complex. Nature 376 313–320. PubMed

Johnson, L.N. and Lewis, R.J. 2001. Structural basis for control by phosphorylation. Chem. Rev. 101 2209–2242. PubMed

Johnson, D.A., Akamine, P., Radzio-Andzelm, E., Madhusudan, M., and Taylor, S.S. 2001. Dynamics of cAMP-dependent protein kinase. Chem. Rev. 101 2243–2270. PubMed

Kříž, Z., Otyepka, M., Bártová, I., and Koča, J. 2004. Analysis of CDK2 active-site hydration: A method to design new inhibitors. Proteins Struct. Funct. Bioinform. 55 258–274. PubMed

Meijer, L. and Raymond, E. 2003. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res. 36 417–425. PubMed

Morgan, D.O. 1997. Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13 261–291. PubMed

Odawara, M., Kadowaki, T., Yamamoto, R., Shibasaki, Y., Tobe, K., Accili, D., Bevins, C., Mikami, Y., Matsuura, N., and Akanuma, Y. 1989. Human diabetes associated with a mutation in the tyrosine kinase domain of the insulin receptor. Science 245 66–68. PubMed

Otyepka, M., Kryštof, V., Havlíček, L., Siglerová, V., Strnad, M., and Koča, J. 2000. Docking-based development of purine-like inhibitors of cyclin-dependent kinase-2. J. Med. Chem. 43 2506–2513. PubMed

Otyepka, M., Kříž, Z., and Koča, J. 2002. Dynamics and binding modes of free cdk2 and its two complexes with inhibitors studied by computer simulations. J. Biomol. Struct. Dynam. 20 141–154. PubMed

Songyang, Z., Blechner, S., Hoagland, N., Hoekstra, M.F., Piwnica-Worms, H., and Cantley, L.C. 1994. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4 973–982. PubMed

Wang, J.M., Cieplak, P., and Kollman, P.A. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21 1049–1074.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...