Extended-spectrum beta-lactamase-conferring transferable resistance to different antimicrobial agents in Enterobacteriaceae isolated from bloodstream infections
Language English Country United States Media print
Document type Journal Article
PubMed
16110915
DOI
10.1007/bf02931459
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- Bacteremia microbiology MeSH
- beta-Lactamases genetics MeSH
- beta-Lactam Resistance genetics MeSH
- beta-Lactams pharmacology MeSH
- Enterobacteriaceae drug effects enzymology genetics isolation & purification MeSH
- Enterobacteriaceae Infections microbiology MeSH
- Conjugation, Genetic MeSH
- Humans MeSH
- Microbial Sensitivity Tests methods MeSH
- Polymerase Chain Reaction MeSH
- Gene Transfer, Horizontal * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- beta-Lactamases MeSH
- beta-Lactams MeSH
Twenty (18.5%) out of 108 clinical isolates of the family Enterobacteriaceae responsible for bloodstream infection were extended-spectrum beta-lactamase (ESBL)-positive in two screening tests, the double disk synergy test and the Oxoid Combination Disk method. Eleven out of the 20 ESBL-positive isolates transferred oxyimino-beta-lactam resistance to E. coli K12 C600 recipient strain with a frequency of 10(-8) - 10(-1) per donor cell. PCR analysis revealed that the majority of the transconjugants (9 of 11) express CTX-M-type beta-lactamases. Donor strains and their transconjugants displayed susceptibility patterns typical of ESBL producers. They were resistant to oxyimino-beta-lactams but susceptible to clavulanic acid and carbapenems. Resistances to aminoglycosides, tetracycline and mercuric chloride were, in some cases, co-transferred with oxyimino-beta-lactam resistance, suggesting that various resistance determinants were carried by the same conjugative plasmids.
See more in PubMed
Antimicrob Agents Chemother. 1998 Apr;42(4):827-32 PubMed
JAMA. 1995 Aug 23-30;274(8):639-44 PubMed
Clin Infect Dis. 1997 Jan;24 Suppl 1:S19-45 PubMed
Antimicrob Agents Chemother. 2004 Jan;48(1):1-14 PubMed
J Bacteriol. 1977 Jan;129(1):276-81 PubMed
Clin Microbiol Rev. 1998 Oct;11(4):589-603 PubMed
Antimicrob Agents Chemother. 1991 Sep;35(9):1697-704 PubMed
Chest. 1991 Jul;100(1):164-7 PubMed
Antimicrob Agents Chemother. 1998 Dec;42(12):3079-85 PubMed
Folia Microbiol (Praha). 2003;48(2):243-7 PubMed
Zentralbl Bakteriol. 1997 Nov;286(4):449-55 PubMed
J Antimicrob Chemother. 2003 Feb;51(2):470-1 PubMed
Infection. 1983 Nov-Dec;11(6):315-7 PubMed
Antimicrob Agents Chemother. 1991 Jan;35(1):164-9 PubMed
Antimicrob Agents Chemother. 2001 Aug;45(8):2269-75 PubMed
Eur J Clin Microbiol Infect Dis. 1994;13 Suppl 1:S2-11 PubMed
Arch Intern Med. 1995 Jun 12;155(11):1177-84 PubMed
Antimicrob Agents Chemother. 2004 Apr;48(4):1249-55 PubMed
J Antimicrob Chemother. 1996 Sep;38(3):409-24 PubMed
Antimicrob Agents Chemother. 2001 Dec;45(12):3355-61 PubMed
Folia Microbiol (Praha). 2004;49(6):763-8 PubMed
Plasmid. 1990 Jan;23(1):27-34 PubMed
Int J Antimicrob Agents. 2000 Mar;14(2):137-42 PubMed
Clin Microbiol Rev. 2001 Oct;14(4):933-51, table of contents PubMed
J Clin Microbiol. 1999 Dec;37(12):4020-7 PubMed
J Antimicrob Chemother. 1993 Oct;32(4):559-70 PubMed
Infect Control Hosp Epidemiol. 2000 Aug;21(8):510-5 PubMed
J Clin Microbiol. 2000 Nov;38(11):4228-32 PubMed
Folia Microbiol (Praha). 2004;49(4):457-64 PubMed
Clin Microbiol Rev. 1995 Oct;8(4):557-84 PubMed
Folia Microbiol (Praha). 2001;46(4):339-44 PubMed
Rev Infect Dis. 1988 Jul-Aug;10(4):867-78 PubMed