Molecular and phenotypic analysis of mutations causing anionic phospholipid deficiency in closely related yeast species
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Biofilms MeSH
- Phenotype MeSH
- Phospholipids chemistry deficiency MeSH
- Fungal Proteins chemistry genetics metabolism MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Yeasts chemistry classification genetics physiology MeSH
- Molecular Sequence Data MeSH
- Mutation * MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Transferases (Other Substituted Phosphate Groups) chemistry genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase MeSH Browser
- Phospholipids MeSH
- Fungal Proteins MeSH
- Transferases (Other Substituted Phosphate Groups) MeSH
The pel1 mutation in Saccharomyces cerevisiae and the Cgpgs1Delta mutation in Candida glabrata result in deficiency of mitochondrial phosphatidylglycerolphosphate synthase and lack of two anionic phospholipids, phosphatidylglycerol and cardiolipin. DNA sequence analysis of the PCR-amplified pel1 mutant allele revealed that the pel1 mutation resulted from a single amino-acid substitution (Glu(463)Lys) in the C-terminal part of encoded enzyme. The CgPGS1 gene cloned in a centromeric pFL38 vector functionally complemented the pel1 mutation in S. cerevisiae. Likewise, the ScPGS1 gene cloned in pCgACU5 plasmid fully complemented the Cgpgs1Delta mutation in C. glabrata. This mutation increased the cell surface hydrophobicity and decreased biofilm formation. These results support a close evolutionary relatedness of S. cerevisiae and C. glabrata and point to the relationship between expression of virulence factors and anionic phospholipid deficiency in pathogenic C. glabrata.
See more in PubMed
Antimicrob Agents Chemother. 2001 Sep;45(9):2475-9 PubMed
Mol Microbiol. 1997 Nov;26(3):481-91 PubMed
J Biol Chem. 1981 Feb 25;256(4):1874-80 PubMed
FEBS Lett. 1998 Jan 2;421(1):15-8 PubMed
Microbiology (Reading). 2003 Feb;149(Pt 2):353-362 PubMed
Antimicrob Agents Chemother. 1999 Nov;43(11):2753-65 PubMed
J Biol Chem. 2004 Jul 30;279(31):32294-300 PubMed
Folia Microbiol (Praha). 2006;51(1):3-20 PubMed
Curr Genet. 1993 Oct;24(4):307-12 PubMed
J Biol Chem. 1998 Apr 17;273(16):9829-36 PubMed
J Biol Chem. 2005 Oct 21;280(42):35410-6 PubMed
Biochem J. 2002 May 15;364(Pt 1):317-22 PubMed
Curr Opin Microbiol. 2005 Aug;8(4):378-84 PubMed
J Biol Chem. 2001 Jul 6;276(27):25262-72 PubMed
Yeast. 1995 Oct;11(13):1223-31 PubMed
Antimicrob Agents Chemother. 2004 May;48(5):1600-13 PubMed
FEMS Yeast Res. 2004 Oct;5(1):19-27 PubMed
Microbiology (Reading). 1997 Sep;143 ( Pt 9):3015-3021 PubMed
Prog Lipid Res. 2000 May;39(3):257-88 PubMed
FEMS Microbiol Lett. 1996 Jun 15;140(1):43-7 PubMed
Curr Genet. 2008 May;53(5):313-22 PubMed
J Biol Chem. 1994 Jan 21;269(3):1940-4 PubMed
Mol Gen Genet. 1997 Oct;256(4):397-405 PubMed
Mol Biol Cell. 2005 Feb;16(2):665-75 PubMed
Gene. 1986;42(2):169-73 PubMed
J Biol Chem. 1990 Nov 15;265(32):19434-40 PubMed
FEBS Lett. 1974 Jun 15;42(3):309-13 PubMed
J Biol Chem. 2007 Jun 1;282(22):15946-53 PubMed
J Dent Res. 2007 Mar;86(3):204-15 PubMed
Yeast. 1998 Dec;14(16):1471-510 PubMed
J Biol Chem. 2000 Jul 21;275(29):22387-94 PubMed
Folia Microbiol (Praha). 2005;50(4):293-9 PubMed
Infect Immun. 1985 Oct;50(1):97-101 PubMed
Curr Genet. 1998 Oct;34(4):297-302 PubMed
Biochim Biophys Acta. 1997 Sep 4;1348(1-2):187-91 PubMed
J Biol Chem. 2003 Dec 26;278(52):52873-80 PubMed
Biomaterials. 2004 May;25(12):2399-407 PubMed