Four pathogenic Candida species differ in salt tolerance
Language English Country United States Media print-electronic
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Candida albicans pathogenicity physiology MeSH
- Candida glabrata pathogenicity physiology MeSH
- Candida metabolism pathogenicity physiology MeSH
- Potassium Chloride analysis pharmacology MeSH
- Lithium Chloride analysis pharmacology MeSH
- Sodium Chloride analysis pharmacology MeSH
- Species Specificity MeSH
- Salts MeSH
- Salt Tolerance physiology MeSH
- Virulence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Potassium Chloride MeSH
- Lithium Chloride MeSH
- Sodium Chloride MeSH
- Salts MeSH
The virulence of Candida species depends on many environmental conditions, including extracellular pH and concentration of alkali metal cations. Tests of the tolerance/sensitivity of four pathogenic Candida species (C. albicans, C. dubliniensis, C. glabrata, and C. parapsilosis) to alkali metal cations under various growth conditions revealed significant differences among these species. Though all of them can be classified as rather osmotolerant yeast species, they exhibit different levels of tolerance to different salts. C. parapsilosis and C. albicans are the most salt-tolerant in general; C. dubliniensis is the least tolerant on rich YPD media and C. glabrata on acidic (pH 3.5) minimal YNB medium. C. dubliniensis is relatively salt-sensitive in spite of its ability to maintain as high intracellular K(+)/Na(+) ratio as its highly salt-tolerant relative C. albicans. On the other hand, C. parapsilosis can grow in the presence of very high external NaCl concentrations in spite of its high intracellular Na(+) concentrations (and thus lower K(+)/Na(+) ratio) and thus resembles salt-tolerant (halophilic) Debaryomyces hansenii.
See more in PubMed
Biochim Biophys Acta. 2000 Mar 10;1469(1):1-30 PubMed
Int J Biochem Cell Biol. 1997 Aug-Sep;29(8-9):1097-101 PubMed
Microbiology (Reading). 2007 Aug;153(Pt 8):2603-2612 PubMed
Microb Ecol. 2005 Oct;50(3):408-17 PubMed
BMC Microbiol. 2008 May 20;8:80 PubMed
Int J Food Microbiol. 2000 Jun 1;56(2-3):191-7 PubMed
Microbiology (Reading). 1998 Oct;144 ( Pt 10):2749-2758 PubMed
Folia Microbiol (Praha). 2003;48(2):173-6 PubMed
Biotechniques. 2007 Nov;43(5):667-72 PubMed
FEMS Yeast Res. 2003 Jun;3(4):347-62 PubMed
Physiol Rev. 2006 Oct;86(4):1049-92 PubMed
J Antibiot (Tokyo). 2006 May;59(5):281-7 PubMed
Physiol Res. 2004;53 Suppl 1:S91-8 PubMed
Mol Microbiol. 2001 May;40(3):656-68 PubMed
FEMS Microbiol Lett. 2005 Mar 15;244(2):229-34 PubMed
Yeast. 2008 Jul;25(7):465-83 PubMed
Mol Microbiol. 2009 Apr;72(1):216-28 PubMed