The potency of hyaluronan of different molecular weights in the stimulation of blood phagocytes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21403830
PubMed Central
PMC3042665
DOI
10.1155/2010/380948
Knihovny.cz E-zdroje
- MeSH
- antigeny CD11b krev MeSH
- CD antigeny krev MeSH
- degranulace buněk účinky léků MeSH
- fagocyty účinky léků fyziologie MeSH
- GPI-vázané proteiny krev MeSH
- kyselina hyaluronová chemie farmakologie MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- molekuly buněčné adheze krev MeSH
- reaktivní formy kyslíku krev MeSH
- receptory komplementu 3b krev MeSH
- techniky in vitro MeSH
- TNF-alfa krev MeSH
- zánět krev etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD11b MeSH
- CD antigeny MeSH
- CEACAM8 protein, human MeSH Prohlížeč
- CR1 protein, human MeSH Prohlížeč
- GPI-vázané proteiny MeSH
- ITGAM protein, human MeSH Prohlížeč
- kyselina hyaluronová MeSH
- molekuly buněčné adheze MeSH
- reaktivní formy kyslíku MeSH
- receptory komplementu 3b MeSH
- TNF-alfa MeSH
The regulatory functions of glycosaminoglycan hyaluronan (HA) are suggested to be dependent on its molecular weight (MW). Proinflammatory and stimulatory effects are proposed mainly for the low MW HA. However, the complex response of blood phagocytes to HA of different MW is unclear. Herein, the effects of highly purified HA of precisely defined MW (52, 250, and 970 kDa) on human blood phagocytes were tested. All MW HA activated blood phagocytes, including the spontaneous production of ROS, degranulation, and the production of tumor necrosis factor alpha, with low MW HA 52 kDa having the highest potency and high MW HA 970 kDa having the lowest potency. Interestingly, HA inhibited ROS production stimulated by opsonized zymosan particles and, in contrast, potentiated starch-activated ROS production, mostly independent of MW. Data showed a significant effect of HA of different MW on blood phagocytes, including high MW HA.
Zobrazit více v PubMed
Noble PW, Jiang D. Matrix regulation of lung injury, inflammation, and repair: the role of innate immunity. Proceedings of the American Thoracic Society. 2006;3(5):401–404. PubMed PMC
Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. European Journal of Cell Biology. 2006;85(8):699–715. PubMed
Stuhlmeier KM. Aspects of the biology of hyaluronan, a largely neglected but extremely versatile molecule. Wiener Medizinische Wochenschrift. 2006;156(21-22):563–568. PubMed
Puré E, Cuff CA. A crucial role for CD44 in inflammation. Trends in Molecular Medicine. 2001;7(5):213–221. PubMed
Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. Journal of Biological Chemistry. 2004;279(17):17079–17084. PubMed
Tesar BM, Jiang D, Liang J, Palmer SM, Noble PW, Goldstein DR. The role of hyaluronan degradation products as innate alloimmune agonists. American Journal of Transplantation. 2006;6(11):2622–2635. PubMed
Laurent TC, Dahl IM, Dahl LB, et al. The catabolic fate of hyaluronic acid. Connective Tissue Research. 1986;15(1-2):33–41. PubMed
Dale DC, Boxer L, Conrad Liles W. The phagocytes: neutrophils and monocytes. Blood. 2008;112(4):935–945. PubMed
Gallova L, Kubala L, Ciz M, Lojek A. IL-10 does not affect oxidative burst and expression of selected surface antigen on human blood phagocytes in vitro. Physiological Research. 2004;53(2):199–208. PubMed
Pavelkova M, Kubala L. Luminol-, isoluminol- and lucigenin-enhanced chemiluminescence of rat blood phagocytes stimulated with different activators. Luminescence. 2004;19(1):37–42. PubMed
Gullberg U, Bengtsson N, Bülow E, Garwicz D, Lindmark A, Olsson I. Processing and targeting of granule proteins in human neutrophils. Journal of Immunological Methods. 1999;232(1-2):201–210. PubMed
Nuutila J, Jalava-Karvinen P, Hohenthal U, et al. Comparison of degranulation of easily mobilizable intracellular granules by human phagocytes in healthy subjects and patients with infectious diseases. Human Immunology. 2009;70(10):813–819. PubMed
Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes and Infection. 2003;5(14):1317–1327. PubMed
Yamawaki H, Hirohata S, Miyoshi T, et al. Hyaluronan receptors involved in cytokine induction in monocytes. Glycobiology. 2009;19(1):83–92. PubMed
Hakansson L, Hallgren R, Venge P. Effect of hyaluronic acid on phagocytosis of opsonized latex particles. Scandinavian Journal of Immunology. 1980;11(6):649–653. PubMed
Pisko EJ, Turner RA, Soderstrom LP. Inhibition of neutrophil phagocytosis and enzyme release by hyaluronic acid. Clinical and Experimental Rheumatology. 1983;1(1):41–44. PubMed
Tamoto K, Nochi H, Tada M, et al. High-molecular-weight hyaluronic acids inhibit chemotaxis and phagocytosis but not lysosomal enzyme release induced by receptor-mediated stimulations in guinea pig phagocytes. Microbiology and Immunology. 1994;38(1):73–80. PubMed
Tamoto K, Tada M, Shimada S, Nochi H, Mori Y. Effects of high-molecular-weight hyaluronates on the functions of guinea pig polymorphonuclear leukocytes. Seminars in Arthritis and Rheumatism. 1993;22(6):4–8. PubMed
Ahlgren T, Jarstrand C. Hyaluronic acid enhances phagocytosis of human monocytes in vitro. Journal of Clinical Immunology. 1984;4(3):246–249. PubMed
Moffat FL, Han T, Li ZM, et al. Involvement of CD44 and the cytoskeletal linker protein ankyrin in human neutrophil bacterial phagocytosis. Journal of Cellular Physiology. 1996;168(3):638–647. PubMed
Krejcova D, Pekarova M, Safrankova B, Kubala L. The effect of different molecular weight hyaluronan on macrophage physiology. Neuroendocrinology Letters. 2009;30(supplement 1):106–111. PubMed
Podzimek S, Hermannova M, Bilerova H, Bezakova Z, Velebny V. Solution properties of hyaluronic acid and comparison of SEC-MALS-VIS data with off-line capillary viscometry. Journal of Applied Polymer Science. 2010;116(5):3013–3020.
Hakansson L, Hallgren R, Venge P. Regulation of granulocyte function by hyaluronic acid: in vitro and in vivo effects on phagocytosis, locomotion, and metabolism. Journal of Clinical Investigation. 1980;66(2):298–305. PubMed PMC
Lym HS, Suh Y, Park CK. Effects of hyaluronic acid on the polymorphonuclear leukocyte (PMN) release of active oxygen and protection of bovine corneal endothelial cells from activated PMNs. Korean Journal of Ophthalmology. 2004;18(1):23–28. PubMed
Yasuda T. Hyaluronan inhibits cytokine production by lipopolysaccharide-stimulated U937 macrophages through down-regulation of NF-κB via ICAM-1. Inflammation Research. 2007;56(6):246–253. PubMed
Forrester JV, Wilkinson PC. Inhibition of leukocyte locomotion by hyaluronic acid. Journal of Cell Science. 1981;48:315–331. PubMed
Krasiński R, Tchórzewski H, Lewkowicz P. Antioxidant effect of hyaluronan on polymorphonuclear leukocyte-derived reactive oxygen species is dependent on its molecular weight and concentration and mainly involves the extracellular space. Postepy Hig Med Dosw. 2009;63:205–212. PubMed
Tengblad A, Laurent UBG, Lilja K. Concentration and relative molecular mass of hyaluronate in lymph and blood. Biochemical Journal. 1986;236(2):521–525. PubMed PMC
Hájková V, Svobodová A, Krejčová D, et al. Soluble glucomannan isolated from Candida utilis primes blood phagocytes. Carbohydrate Research. 2009;344(15):2036–2041. PubMed
Schröder AK, Uciechowski P, Fleischer D, Rink L. Crosslinking of CD66B on peripheral blood neutrophils mediates the release of interleukin-8 from intracellular storage. Human Immunology. 2006;67(9):676–682. PubMed
Hakansson L, Venge P. The molecular basis of the hyaluronic acid-mediated stimulation of granulocyte function. Journal of Immunology. 1987;138(12):4347–4352. PubMed
Hakansson L, Venge P. The combined action of hyaluronic acid and fibronectin stimulates neutrophil migration. Journal of Immunology. 1985;135(4):2735–2739. PubMed
Klebanoff SJ. Myeloperoxidase: friend and foe. Journal of Leukocyte Biology. 2005;77(5):598–625. PubMed