• This record comes from PubMed

Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements

. 2011 Sep ; 79 (1) : 122-7. [epub] 20110524

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R37 CA027834 NCI NIH HHS - United States
R01 CA027834-26A2 NCI NIH HHS - United States
CA 27834 NCI NIH HHS - United States
R01 CA027834-30 NCI NIH HHS - United States
R01 CA027834 NCI NIH HHS - United States

Links

PubMed 21640189
PubMed Central PMC3141108
DOI 10.1016/j.pep.2011.05.010
PII: S1046-5928(11)00124-0
Knihovny.cz E-resources

Matrix proteins play multiple roles both in early and late stages of the viral replication cycle. Their N-terminal myristoylation is important for interaction with the host cell membrane during virus budding. We used Escherichia coli, carrying N-myristoyltransferase gene, for the expression of the myristoylated His-tagged matrix protein of Mason-Pfizer monkey virus. An efficient, single-step purification procedure eliminating all contaminating proteins including, importantly, the non-myristoylated matrix protein was designed. The comparison of NMR spectra of matrix protein with its myristoylated form revealed substantial structural changes induced by this fatty acid modification.

See more in PubMed

Rhee SS, Hunter E. Structural role of the matrix protein of type D retroviruses in gag polyprotein stability and capsid assembly. J.Virol. 1990;64:4383–4389. PubMed PMC

Freed EO, Orenstein JM, Buckler-White AJ, Martin MA. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J.Virol. 1994;68:5311–5320. PubMed PMC

Hunter Eric. Macromolecular interactions in the assembly of HIV and other retroviruses. Seminars in Virology. 1994;5

Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim.Biophys.Acta. 1999;1451:1–16. PubMed

Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc.Natl.Acad.Sci.U.S.A. 2004;101:517–522. PubMed PMC

Saad JS, Ablan SD, Ghanam RH, Kim A, Andrews K, Nagashima K, Soheilian F, Freed EO, Summers MF. Structure of the myristylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. J. Mol. Biol. 2008;382:434–447. PubMed PMC

Krausslich HG, Welker R. Intracellular transport of retroviral capsid components. Curr.Top.Microbiol.Immunol. 1996;214:25–63. PubMed

Soneoka Y, Kingsman SM, Kingsman AJ. Mutagenesis analysis of the murine leukemia virus matrix protein: identification of regions important for membrane localization and intracellular transport. J.Virol. 1997;71:5549–5559. PubMed PMC

Manrique ML, Gonzalez SA, Affranchino JL. Functional relationship between the matrix proteins of feline and simian immunodeficiency viruses. Virology. 2004;329:157–167. PubMed

Resh MD. A myristoyl switch regulates membrane binding of HIV-1 Gag. Proc.Natl.Acad.Sci.U.S.A. 2004;101:417–418. PubMed PMC

Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature. 1997;389:198–202. PubMed

Goldberg J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell. 1998;95:237–248. PubMed

Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc.Natl.Acad.Sci.U.S.A. 2006;103:11364–11369. PubMed PMC

Spearman P, Horton R, Ratner L, Kuli-Zade I. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J.Virol. 1997;71:6582–6592. PubMed PMC

Vlach J, Srb P, Prchal J, Grocky M, Lang J, Ruml T, Hrabal R. Nonmyristoylated matrix protein from the Mason-Pfizer monkey virus forms oligomers. J. Mol. Biol. 2009;390:967–980. PubMed

Sambrook J, Russell R. Molecular Cloning A Laboratory Manual. 2001. pp. 1.112–1.115.

Song C, Dubay SR, Hunter E. A tyrosine motif in the cytoplasmic domain of mason-pfizer monkey virus is essential for the incorporation of glycoprotein into virions. Journal of Virology. 2003;77:5192–5200. PubMed PMC

Zabransky A, Andreansky M, Hruskova-Heidingsfeldova O, Havlicek V, Hunter E, Ruml T, Pichova I. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology. 1998;245:250–256. PubMed

Strohalm M, Kavan D, Novak P, Volny M, Havlicek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal.Chem. 2010;82:4648–4651. PubMed

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. 2005:571–607. PubMed

Delaglio F, Grzesiek S, Vuister GW, Zhu G. NMRPipe: a multidimensional spectra processing system based on UNIX pipes. J.Biomol.NMR. 1995;6:277–293. PubMed

Goddard TD, Kneller DG. Sparky 3. San Francisco: University of California; 2006.

Vlach J, Lipov J, Veverka V, Rumlova M, Ruml T, Hrabal R. Letter to the editor: Assignment of H-1, C-13, and N-15 resonances of WT matrix protein and its R55F mutant from Mason-Pfizer monkey virus. J. Biomol. NMR. 2005;31:381–382. PubMed

Geyer M, Munte CE, Schorr J, Kellner R, Kalbitzer HR. Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J. Mol. Biol. 1999;289:123–138. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...