Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Phosphates metabolism MeSH
- Intracellular Membranes metabolism MeSH
- Mitochondria, Liver metabolism MeSH
- Rats MeSH
- Permeability MeSH
- Peroxides metabolism MeSH
- Rats, Wistar MeSH
- Mitochondrial Permeability Transition Pore MeSH
- Mitochondrial Membrane Transport Proteins metabolism MeSH
- Calcium metabolism MeSH
- Mitochondrial Swelling physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phosphates MeSH
- Peroxides MeSH
- Mitochondrial Permeability Transition Pore MeSH
- Mitochondrial Membrane Transport Proteins MeSH
- Calcium MeSH
We describe a new method for the analysis of mitochondrial swelling curves. Using classical swelling curves, only the maximum extent of the swelling can be calculated in a numerical form. However, taking the derivative of the classical swelling curves enables the evaluation of two additional parameters of the swelling process in a numerical form, namely, the maximum swelling rate after the addition of the swelling inducer (as dA₅₂₀/10 s) and the time (in sec) at which the maximum swelling rate after the addition of the swelling inducer is obtained. The use of these three parameters enables the better characterization of the swelling process as demonstrated by the evaluation of calcium and phosphate interactions in the opening of the mitochondrial permeability transition pore and by the characterization of the peroxide potentiating action.
See more in PubMed
Arch Biochem Biophys. 1998 Jun 1;354(1):151-7 PubMed
Eur J Biochem. 1988 Dec 15;178(2):489-501 PubMed
Arch Biochem Biophys. 1979 Jul;195(2):460-7 PubMed
J Mol Cell Cardiol. 2009 Jun;46(6):821-31 PubMed
Biochim Biophys Acta. 2005 Jun 30;1708(2):178-86 PubMed
J Biol Chem. 1993 Oct 15;268(29):21939-45 PubMed
Anal Biochem. 2003 Feb 1;313(1):46-52 PubMed
Biochem Biophys Res Commun. 2000 Jul 5;273(2):603-8 PubMed
Biochem J. 1965 May;95:387-92 PubMed
Am J Physiol Cell Physiol. 2007 Feb;292(2):C708-18 PubMed
Mitochondrion. 2003 Apr;2(5):319-43 PubMed
Exp Cell Res. 1996 Jan 10;222(1):84-94 PubMed
J Biol Chem. 1992 Feb 15;267(5):2934-9 PubMed
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):595-606 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Cell Calcium. 2011 Sep;50(3):222-33 PubMed
Biochem J. 1987 Aug 1;245(3):915-8 PubMed
Am J Physiol Heart Circ Physiol. 2006 May;290(5):H2024-34 PubMed
J Biol Chem. 1993 Jul 5;268(19):13791-8 PubMed
Biochimie. 2002 Feb-Mar;84(2-3):153-66 PubMed
J Biol Chem. 2000 Sep 22;275(38):29521-7 PubMed
Am J Physiol. 1990 May;258(5 Pt 1):C755-86 PubMed
Arch Biochem Biophys. 1979 Jul;195(2):453-9 PubMed
FEBS Lett. 1992 Jun 15;304(2-3):192-4 PubMed
J Biol Chem. 1998 May 15;273(20):12662-8 PubMed
FEBS J. 2006 May;273(10):2077-99 PubMed
Biochem J. 1988 Oct 1;255(1):357-60 PubMed
J Bioenerg Biomembr. 1995 Dec;27(6):583-96 PubMed
Anal Biochem. 1977 Jun;80(2):401-8 PubMed
Mol Cell Biochem. 2010 Feb;335(1-2):147-53 PubMed
J Biol Chem. 1965 Jun;240:2712-20 PubMed
Czech Footprints in the Bioenergetics Research