Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
22701458
PubMed Central
PMC3372939
DOI
10.3389/fimmu.2012.00155
Knihovny.cz E-resources
- Keywords
- Fyn, Lck, TCR triggering, compartmentalization, heavy and light DRMs, membrane microdomains, spatio-temporal regulation,
- Publication type
- Journal Article MeSH
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
See more in PubMed
Abraham N., Miceli M. C., Parnes J. R., Veillette A. (1991). Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature 350, 62–6610.1038/350062a0 PubMed DOI
Acuto O., di Bartolo V., Micheli F. (2008). Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat. Rev. Immunol. 8, 699–71210.1038/nri2397 PubMed DOI
Artyomov M. N., Lis M., Devadas S., Davis M. M., Chakraborty A. K. (2010). CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl. Acad. Sci. U.S.A. 107, 16916–1692110.1073/pnas.1010568107 PubMed DOI PMC
Ashwell J. D., D’Oro U. (1999). CD45 and Src-family kinases: and now for something completely different. Immunol. Today 20, 412–41610.1016/S0167-5699(99)01505-4 PubMed DOI
Ballek O., Brouckova A., Manning J., Filipp D. (2012). A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts. Immunol. Lett. 10.1016/j.imlet.2012.01.001 PubMed DOI
Berry R. (2011). The role of L(u)ck in T cell triggering. Sci. Signal. 4, jc2.10.1126/scisignal.2001657 PubMed DOI
Biffen M., McMichael-Phillips D., Larson T., Venkitaraman A., Alexander D. (1994). The CD45 tyrosine phosphatase regulates specific pools of antigen receptor-associated p59fyn and CD4-associated p56lck tyrosine in human T-cells. EMBO J. 13, 1920–1929 PubMed PMC
Billadeau D. D., Nolz J. C., Gomez T. S. (2007). Regulation of T-cell activation by the cytoskeleton. Nat. Rev. Immunol. 7, 131–14310.1038/nri2021 PubMed DOI
Boggon T. J., Eck M. J. (2004). Structure and regulation of Src family kinases. Oncogene 23, 7918–792710.1038/sj.onc.1208081 PubMed DOI
Bonnard M., Maroun C. R., Julius M. (1997). Physical association of CD4 and CD45 in primary, resting CD4+ T cells. Cell. Immunol. 175, 1–1110.1006/cimm.1996.1044 PubMed DOI
Brdicka T., Pavlistova D., Leo A., Bruyns E., Korinek V., Angelisova P., Scherer J., Shevchenko A., Hilgert I., Cerny J., Drbal K., Kuramitsu Y., Kornacker B., Horejsi V., Schraven B. (2000). Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–160410.1084/jem.191.9.1591 PubMed DOI PMC
Brdickova N., Brdicka T., Andera L., Spicka J., Angelisova P., Milgram S. L., Horejsi V. (2001). Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 507, 133–13610.1016/S0014-5793(01)02955-6 PubMed DOI
Brown D. A. (2006). Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda) 21, 430–43910.1152/physiol.00032.2006 PubMed DOI
Brown D. A. (2007). Analysis of raft affinity of membrane proteins by detergent-insolubility. Methods Mol. Biol. 398, 9–2010.1007/978-1-59745-513-8_2 PubMed DOI
Brown D. A., Rose J. K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–54410.1016/0092-8674(92)90200-V PubMed DOI
Brugger B., Graham C., Leibrecht I., Mombelli E., Jen A., Wieland F., Morris R. (2004). The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition. J. Biol. Chem. 279, 7530–753610.1074/jbc.M310207200 PubMed DOI
Burkhardt J. K., Carrizosa E., Shaffer M. H. (2008). The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–25910.1146/annurev.immunol.26.021607.090347 PubMed DOI
Burroughs N. J., Kohler K., Miloserdov V., Dustin M. L., van der Merwe P. A., Davis D. M. (2011). Boltzmann energy-based image analysis demonstrates that extracellular domain size differences explain protein segregation at immune synapses. PLoS Comput. Biol. 7, e1002076 10.1371/journal.pcbi.1002076 PubMed DOI PMC
Cairo C. W., Das R., Albohy A., Baca Q. J., Pradhan D., Morrow J. S., Coombs D., Golan D. E. (2010). Dynamic regulation of CD45 lateral mobility by the spectrin-ankyrin cytoskeleton of T cells. J. Biol. Chem. 285, 11392–1140110.1074/jbc.M109.075648 PubMed DOI PMC
Call M. E., Pyrdol J., Wiedmann M., Wucherpfennig K. W. (2002). The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–97910.1016/S0092-8674(02)01194-7 PubMed DOI PMC
Chakraborty A. K., Das J. (2010). Pairing computation with experimentation: a powerful coupling for understanding T cell signalling. Nat. Rev. Immunol. 10, 59–7110.1038/nri2688 PubMed DOI
Chau L. A., Bluestone J. A., Madrenas J. (1998). Dissociation of intracellular signaling pathways in response to partial agonist ligands of the T cell receptor. J. Exp. Med. 187, 1699–170910.1084/jem.187.10.1699 PubMed DOI PMC
Chau L. A., Madrenas J. (1999). Phospho-LAT-independent activation of the ras-mitogen-activated protein kinase pathway: a differential recruitment model of TCR partial agonist signaling. J. Immunol. 163, 1853–1858 PubMed
Chen X., Jen A., Warley A., Lawrence M. J., Quinn P. J., Morris R. J. (2009). Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition. Biochem. J. 417, 525–53310.1042/BJ20081385 PubMed DOI
Chen X., Morris R., Lawrence M. J., Quinn P. J. (2007). The isolation and structure of membrane lipid rafts from rat brain. Biochimie 89, 192–19610.1016/j.biochi.2006.07.006 PubMed DOI
Chiang G. G., Sefton B. M. (2001). Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr- 394 by the SHP-1 protein-tyrosine phosphatase. J. Biol. Chem. 276, 23173–2317810.1074/jbc.M101219200 PubMed DOI
Chichili G. R., Westmuckett A. D., Rodgers W. (2010). T cell signal regulation by the actin cytoskeleton. J. Biol. Chem. 285, 14737–1474610.1074/jbc.M109.097311 PubMed DOI PMC
Choudhuri K., van der Merwe P. A. (2007). Molecular mechanisms involved in T cell receptor triggering. Semin. Immunol. 19, 255–26110.1016/j.smim.2007.04.005 PubMed DOI
Davidson D., Bakinowski M., Thomas M. L., Horejsi V., Veillette A. (2003). Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol. Cell. Biol. 23, 2017–202810.1128/MCB.23.6.2017-2028.2003 PubMed DOI PMC
Davidson D., Schraven B., Veillette A. (2007). PAG-associated FynT regulates calcium signaling and promotes anergy in T lymphocytes. Mol. Cell. Biol. 27, 1960–197310.1128/MCB.01983-06 PubMed DOI PMC
Davis D. M. (2009). Mechanisms and functions for the duration of intercellular contacts made by lymphocytes. Nat. Rev. Immunol. 9, 543–55510.1038/nri2602 PubMed DOI
Davis D. M., Dustin M. L. (2004). What is the importance of the immunological synapse? Trends Immunol. 25, 323–32710.1016/j.it.2004.03.007 PubMed DOI
Davis S. J., van der Merwe P. A. (2006). The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–80910.1038/nrm2042 PubMed DOI
Davis S. J., van der Merwe P. A. (2011). Lck and the nature of the T cell receptor trigger. Trends Immunol. 32, 1–510.1016/j.it.2010.11.003 PubMed DOI
Denny M. F., Patai B., Straus D. B. (2000). Differential T-cell antigen receptor signaling mediated by the Src family kinases Lck and Fyn. Mol. Cell. Biol. 20, 1426–143510.1128/MCB.20.4.1426-1435.2000 PubMed DOI PMC
Dobenecker M. W., Schmedt C., Okada M., Tarakhovsky A. (2005). The ubiquitously expressed Csk adaptor protein Cbp is dispensable for embryogenesis and T-cell development and function. Mol. Cell. Biol. 25, 10533–1054210.1128/MCB.25.23.10533-10542.2005 PubMed DOI PMC
D’Oro U., Ashwell J. D. (1999). Cutting edge: the CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J. Immunol. 162, 1879–1883 PubMed
Drevot P., Langlet C., Guo X. J., Bernard A. M., Colard O., Chauvin J. P., Lasserre R., He H. T. (2002). TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–190810.1093/emboj/21.8.1899 PubMed DOI PMC
Dykstra M., Cherukuri A., Sohn H. W., Tzeng S. J., Pierce S. K. (2003). Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–48110.1146/annurev.immunol.21.120601.141021 PubMed DOI
Edidin M. (2003). The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–28310.1146/annurev.biophys.32.110601.142439 PubMed DOI
Edmonds S. D., Ostergaard H. L. (2002). Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. J. Immunol. 169, 5036–5042 PubMed
Fernandes R. A., Yu C., Carmo A. M., Evans E. J., van der Merwe P. A., Davis S. J. (2010). What controls T cell receptor phosphorylation? Cell 142, 668–66910.1016/j.cell.2010.08.018 PubMed DOI
Filipp D., Julius M. (2004). Lipid rafts: resolution of the “fyn problem?” Mol. Immunol. 41, 645–656 PubMed
Filipp D., Leung B. L., Zhang J., Veillette A., Julius M. (2004). Enrichment of lck in lipid rafts regulates colocalized fyn activation and the initiation of proximal signals through TCR alpha beta. J. Immunol. 172, 4266–4274 PubMed
Filipp D., Moemeni B., Ferzoco A., Kathirkamathamby K., Zhang J., Ballek O., Davidson D., Veillette A., Julius M. (2008). Lck-dependent Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts. J. Biol. Chem. 283, 26409–2642210.1074/jbc.M710372200 PubMed DOI PMC
Filipp D., Zhang J., Leung B. L., Shaw A., Levin S. D., Veillette A., Julius M. (2003). Regulation of Fyn through translocation of activated Lck into lipid rafts. J. Exp. Med. 197, 1221–122710.1084/jem.20022112 PubMed DOI PMC
Friedl P., den Boer A. T., Gunzer M. (2005). Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532–54510.1038/nri1647 PubMed DOI
Gagnon E., Xu C., Yang W., Chu H. H., Call M. E., Chou J. J., Wucherpfennig K. W. (2010). Response multilayered control of T cell receptor phosphorylation. Cell 142, 669–67110.1016/j.cell.2010.08.019 PubMed DOI PMC
Garner A. E., Smith D. A., Hooper N. M. (2008). Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys. J. 94, 1326–134010.1529/biophysj.107.114108 PubMed DOI PMC
Goswami D., Gowrishankar K., Bilgrami S., Ghosh S., Raghupathy R., Chadda R., Vishwakarma R., Rao M., Mayor S. (2008). Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–109710.1016/j.cell.2008.11.032 PubMed DOI PMC
Groves T., Smiley P., Cooke M. P., Forbush K., Perlmutter R. M., Guidos C. J. (1996). Fyn can partially substitute for Lck in T Lymphocyte development. Immunity 5, 417–42810.1016/S1074-7613(00)80498-7 PubMed DOI
Ha-Lee Y. M., Lee Y., Kim Y. K., Sohn J. (2000). Cross-linking of CD4 induces cytoskeletal association of CD4 and p56lck. Exp. Mol. Med. 32, 18–22 PubMed
Hardwick J. S., Sefton B. M. (1997). The activated form of the Lck tyrosine protein kinase in cells exposed to hydrogen peroxide is phosphorylated at both Tyr-394 and Tyr-505. J. Biol. Chem. 272, 25429–2543210.1074/jbc.272.41.25429 PubMed DOI
Harwood N. E., Batista F. D. (2011). The cytoskeleton coordinates the early events of B-cell activation. Cold Spring Harb. Perspect. Biol. 3, a002360.10.1101/cshperspect.a002360 PubMed DOI PMC
Haugh J. M., Lauffenburger D. A. (1997). Physical modulation of intracellular signaling processes by locational regulation. Biophys. J. 72, 2014–203110.1016/S0006-3495(97)78846-5 PubMed DOI PMC
Haughn L., Gratton S., Caron L., Sekaly R. P., Veillette A., Julius M. (1992). Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the alpha beta T-cell receptor. Nature 358, 328–33110.1038/358328a0 PubMed DOI
Haughn L., Leung B., Boise L., Veillette A., Thompson C., Julius M. (1998). Interleukin 2-mediated uncoupling of T cell receptor alpha/beta from CD3 signaling. J. Exp. Med. 188, 1575–158610.1084/jem.188.9.1575 PubMed DOI PMC
Hegedus Z., Chitu V., Toth G. K., Finta C., Varadi G., Ando I., Monostori E. (1999). Contribution of kinases and the CD45 phosphatase to the generation of tyrosine phosphorylation patterns in the T-cell receptor complex zeta chain. Immunol. Lett. 67, 31–3910.1016/S0165-2478(98)00138-2 PubMed DOI
Hermiston M. L., Xu Z., Weiss A. (2003). CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–13710.1146/annurev.immunol.21.120601.140946 PubMed DOI
Horejsi V. (2003). The roles of membrane microdomains (rafts) in T cell activation. Immunol. Rev. 191, 148–16410.1034/j.1600-065X.2003.00001.x PubMed DOI
Horejsi V., Otahal P., Brdicka T. (2010). LAT – an important raft-associated transmembrane adaptor protein. Delivered on 6 July 2009 at the 34th FEBS Congress in Prague, Czech Republic. FEBS J. 277, 4383–439710.1111/j.1742-4658.2010.07831.x PubMed DOI
Hurley T. R., Hyman R., Sefton B. M. (1993). Differential effects of expression of the CD45 tyrosine protein phosphatase on the tyrosine phosphorylation of the lck, fyn, and c-src tyrosine protein kinases. Mol. Cell. Biol. 13, 1651–1656 PubMed PMC
Irles C., Symons A., Michel F., Bakker T. R., van der Merwe P. A., Acuto O. (2003). CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat. Immunol. 4, 189–19710.1038/ni877 PubMed DOI
Irvine D. J., Purbhoo M. A., Krogsgaard M., Davis M. M. (2002). Direct observation of ligand recognition by T cells. Nature 419, 845–84910.1038/nature01076 PubMed DOI
James J. R., McColl J., Oliveira M. I., Dunne P. D., Huang E., Jansson A., Nilsson P., Sleep D. L., Goncalves C. M., Morgan S. H., Felce J. H., Mahen R., Fernandes R. A., Carmo A. M., Klenerman D., Davis S. J. (2011). The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J. Biol. Chem. 286, 31993–3200110.1074/jbc.M111.219212 PubMed DOI PMC
Kabouridis P. S. (2006). Lipid rafts in T cell receptor signalling. Mol. Membr. Biol. 23, 49–5710.1080/09687860500453673 PubMed DOI PMC
Kabouridis P. S., Magee A. I., Ley S. C. (1997). S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983–499810.1093/emboj/16.16.4983 PubMed DOI PMC
Kawabuchi M., Satomi Y., Takao T., Shimonishi Y., Nada S., Nagai K., Tarakhovsky A., Okada M. (2000). Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–100310.1038/35010121 PubMed DOI
Kennedy C., Nelson M. D., Bamezai A. K. (2011). Analysis of detergent-free lipid rafts isolated from a CD4+ T cell line: Interaction with antigen presenting cells promotes coalescing of lipid rafts. Cell Commun. Signal. 9, 31.10.1186/1478-811X-9-31 PubMed DOI PMC
Kersh E. N., Shaw A. S., Allen P. M. (1998). Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281, 572–57510.1126/science.281.5376.572 PubMed DOI
Knorr R., Karacsonyi C., Lindner R. (2009). Endocytosis of MHC molecules by distinct membrane rafts. J. Cell. Sci. 122, 1584–159410.1242/jcs.039727 PubMed DOI
Kosugi A., Sakakura J., Yasuda K., Ogata M., Hamaoka T. (2001). Involvement of SHP-1 tyrosine phosphatase in TCR-mediated signaling pathways in lipid rafts. Immunity 14, 669–68010.1016/S1074-7613(01)00146-7 PubMed DOI
Koumanov K. S., Tessier C., Momchilova A. B., Rainteau D., Wolf C., Quinn P. J. (2005). Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch. Biochem. Biophys. 434, 150–15810.1016/j.abb.2004.10.025 PubMed DOI
Krotov G. I., Krutikova M. P., Zgoda V. G., Filatov A. V. (2007). Profiling of the CD4 receptor complex proteins. Biochemistry Mosc. 72, 1216–122410.1134/S0006297907110077 PubMed DOI
Kuhns M. S., Davis M. M. (2008). The safety on the TCR trigger. Cell 135, 594–59610.1016/j.cell.2008.10.033 PubMed DOI PMC
Kusumi A., Ike H., Nakada C., Murase K., Fujiwara T. (2005). Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–2110.1016/j.smim.2004.09.004 PubMed DOI
Kwik J., Boyle S., Fooksman D., Margolis L., Sheetz M. P., Edidin M. (2003). Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl. Acad. Sci. U.S.A. 100, 13964–1396910.1073/pnas.2336102100 PubMed DOI PMC
Latour S., Veillette A. (2001). Proximal protein tyrosine kinases in immunoreceptor signaling. Curr. Opin. Immunol. 13, 299–30610.1016/S0952-7915(00)00219-3 PubMed DOI
Lee K. H., Holdorf A. D., Dustin M. L., Chan A. C., Allen P. M., Shaw A. S. (2002). T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–154210.1126/science.1069540 PubMed DOI
Leslie M. (2011). Do lipid rafts exist? Science 334, 1046–104710.1126/science.334.6059.1046-a PubMed DOI
Lichtenberg D., Goni F. M., Heerklotz H. (2005). Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–43610.1016/j.tibs.2005.06.004 PubMed DOI
Lindner R., Knorr R. (2009). Rafting trips into the cell. Commun. Integr. Biol. 2, 420–42110.4161/cib.2.5.8945 PubMed DOI PMC
Lindner R., Naim H. Y. (2009). Domains in biological membranes. Exp. Cell Res. 315, 2871–287810.1016/j.yexcr.2009.07.020 PubMed DOI
Lingwood D., Simons K. (2007). Detergent resistance as a tool in membrane research. Nat. Protoc. 2, 2159–216510.1038/nprot.2007.294 PubMed DOI
Lingwood D., Simons K. (2010). Lipid rafts as a membrane-organizing principle. Science 327, 46–5010.1126/science.1174621 PubMed DOI
Louie R. R., King C. S., MacAuley A., Marth J. D., Perlmutter R. M., Eckhart W., Cooper J. A. (1988). p56lck protein-tyrosine kinase is cytoskeletal and does not bind to polyomavirus middle T antigen. J. Virol. 62, 4673–4679 PubMed PMC
Luo K. X., Sefton B. M. (1990). Analysis of the sites in p56lck whose phosphorylation is induced by tetradecanoyl phorbol acetate. Oncogene 5, 803–808 PubMed
Madore N., Smith K. L., Graham C. H., Jen A., Brady K., Hall S., Morris R. (1999). Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18, 6917–692610.1093/emboj/18.24.6917 PubMed DOI PMC
Maksumova L., Le H. T., Muratkhodjaev F., Davidson D., Veillette A., Pallen C. J. (2005). Protein tyrosine phosphatase alpha regulates Fyn activity and Cbp/PAG phosphorylation in thymocyte lipid rafts. J. Immunol. 175, 7947–7956 PubMed
Manes S., Viola A. (2006). Lipid rafts in lymphocyte activation and migration. Mol. Membr. Biol. 23, 59–6910.1080/09687860500430069 PubMed DOI
Marmor M. D., Julius M. (2001). Role for lipid rafts in regulating interleukin-2 receptor signaling. Blood 98, 1489–149710.1182/blood.V98.5.1489 PubMed DOI
Maroun C. R., Julius M. (1994). Distinct roles for CD4 and CD8 as co-receptors in T cell receptor signalling. Eur. J. Immunol. 24, 959–96610.1002/eji.1830240428 PubMed DOI
Marti F., Garcia G. G., Lapinski P. E., MacGregor J. N., King P. D. (2006). Essential role of the T cell-specific adapter protein in the activation of LCK in peripheral T cells. J. Exp. Med. 203, 281–28710.1084/jem.20051637020206c PubMed DOI PMC
Mayer B. J. (1997). Signal transduction: clamping down on Src activity. Curr. Biol. 7, R295–R29810.1016/S0960-9822(06)00141-2 PubMed DOI
McNeill L., Salmond R. J., Cooper J. C., Carret C. K., Cassady-Cain R. L., Roche-Molina M., Tandon P., Holmes N., Alexander D. R. (2007). The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity 27, 425–43710.1016/j.immuni.2007.07.015 PubMed DOI
Mendieta J., Gago F. (2004). In silico activation of Src tyrosine kinase reveals the molecular basis for intramolecular autophosphorylation. J. Mol. Graph. Model. 23, 189–19810.1016/j.jmgm.2004.06.001 PubMed DOI
Methi T., Ngai J., Vang T., Torgersen K. M., Tasken K. (2007). Hypophosphorylated TCR/CD3zeta signals through a Grb2-SOS1-Ras pathway in Lck knockdown cells. Eur. J. Immunol. 37, 2539–254810.1002/eji.200636973 PubMed DOI
Meuer S. C., Schlossman S. F., Reinherz E. L. (1982). Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. Proc. Natl. Acad. Sci. U.S.A. 79, 4395–439910.1073/pnas.79.14.4395 PubMed DOI PMC
Minguet S., Swamy M., Alarcon B., Luescher I. F., Schamel W. W. (2007). Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–5410.1016/j.immuni.2006.10.019 PubMed DOI
Moarefi I., Lafevre-Bernt M., Sicheri F., Huse M., Lee C. H., Kuriyan J., Miller W. T. (1997). Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–65310.1038/385650a0 PubMed DOI
Munro S. (2003). Lipid rafts: elusive or illusive? Cell 115, 377–38810.1016/S0092-8674(03)00882-1 PubMed DOI
Mustelin T., Coggeshall K. M., Altman A. (1989). Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. U.S.A. 86, 6302–630610.1073/pnas.86.16.6302 PubMed DOI PMC
Mustelin T., Pessa-Morikawa T., Autero M., Gassmann M., Andersson L. C., Gahmberg C. G., Burn P. (1992). Regulation of the p59fyn protein tyrosine kinase by the CD45 phosphotyrosine phosphatase. Eur. J. Immunol. 22, 1173–117810.1002/eji.1830220510 PubMed DOI
Mustelin T., Tasken K. (2003). Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem. J. 371, 15–2710.1042/BJ20021637 PubMed DOI PMC
Nagafuku M., Okuyama K., Onimaru Y., Suzuki A., Odagiri Y., Yamashita T., Iwasaki K., Fujiwara M., Takayanagi M., Ohno I., Inokuchi J.-I. (2012). CD4 and CD8 T cells require different membrane gangliosides for activation. Proc. Natl. Acad. Sci. U.S.A. 109, E336–E34210.1073/pnas.1114965109 PubMed DOI PMC
Nam H. J., Poy F., Saito H., Frederick C. A. (2005). Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J. Exp. Med. 201, 441–45210.1084/jem.20041890 PubMed DOI PMC
Nel A. E. (2002). T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J. Allergy Clin. Immunol. 109, 758–77010.1067/mai.2002.124965 PubMed DOI
Nika K., Soldani C., Salek M., Paster W., Gray A., Etzensperger R., Fugger L., Polzella P., Cerundolo V., Dushek O., Hofer T., Viola A., Acuto O. (2010). Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–77710.1016/j.immuni.2010.05.011 PubMed DOI PMC
Nika K., Tautz L., Arimura Y., Vang T., Williams S., Mustelin T. (2007). A weak Lck tail bite is necessary for Lck function in T cell antigen receptor signaling. J. Biol. Chem. 282, 36000–3600910.1074/jbc.M702779200 PubMed DOI
Ostergaard H. L., Shackelford D. A., Hurley T. R., Johnson P., Hyman R., Sefton B. M., Trowbridge I. S. (1989). Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. U.S.A. 86, 8959–896310.1073/pnas.86.22.8959 PubMed DOI PMC
Otahal P., Angelisova P., Hrdinka M., Brdicka T., Novak P., Drbal K., Horejsi V. (2010). A new type of membrane raft-like microdomains and their possible involvement in TCR signaling. J. Immunol. 184, 3689–369610.4049/jimmunol.0902075 PubMed DOI
Otahal P., Pata S., Angelisova P., Horejsi V., Brdicka T. (2011). The effects of membrane compartmentalization of csk on TCR signaling. Biochim. Biophys. Acta 1813, 367–37610.1016/j.bbamcr.2010.12.003 PubMed DOI
Palacios E. H., Weiss A. (2004). Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–800010.1038/sj.onc.1208074 PubMed DOI
Paster W., Paar C., Eckerstorfer P., Jakober A., Drbal K., Schutz G. J., Sonnleitner A., Stockinger H. (2009). Genetically encoded Forster resonance energy transfer sensors for the conformation of the Src family kinase Lck. J. Immunol. 182, 2160–216710.4049/jimmunol.0802639 PubMed DOI
Pizzo P., Giurisato E., Bigsten A., Tassi M., Tavano R., Shaw A., Viola A. (2004). Physiological T cell activation starts and propagates in lipid rafts. Immunol. Lett. 91, 3–910.1016/j.imlet.2003.09.008 PubMed DOI
Quinn P. J. (2010). A lipid matrix model of membrane raft structure. Prog. Lipid Res. 49, 390–40610.1016/j.plipres.2010.05.002 PubMed DOI
Radeva G., Sharom F. J. (2004). Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochem. J. 380, 219–23010.1042/BJ20031348 PubMed DOI PMC
Resh M. D. (2006). Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. STKE 2006, re14.10.1126/stke.3592006re14 PubMed DOI
Rodgers W., Farris D., Mishra S. (2005). Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends Immunol. 26, 97–10310.1016/j.it.2004.11.016 PubMed DOI
Rollet-Labelle E., Marois S., Barbeau K., Malawista S. E., Naccache P. H. (2004). Recruitment of the cross-linked opsonic receptor CD32A (FcgammaRIIA) to high-density detergent-resistant membrane domains in human neutrophils. Biochem. J. 381, 919–92810.1042/BJ20031808 PubMed DOI PMC
Rozdzial M. M., Pleiman C. M., Cambier J. C., Finkel T. H. (1998). pp56Lck mediates TCR zeta-chain binding to the microfilament cytoskeleton. J. Immunol. 161, 5491–5499 PubMed
Rudd M. L., Tua-Smith A., Straus D. B. (2006). Lck SH3 domain function is required for T-cell receptor signals regulating thymocyte development. Mol. Cell. Biol. 26, 7892–790010.1128/MCB.00968-06 PubMed DOI PMC
Salmond R. J., Filby A., Pirinen N., Magee A. I., Zamoyska R. (2011). Mislocalization of Lck impairs thymocyte differentiation and can promote development of thymomas. Blood 117, 108–11710.1182/blood-2010-03-277160 PubMed DOI
Salmond R. J., Filby A., Qureshi I., Caserta S., Zamoyska R. (2009). T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol. Rev. 228, 9–2210.1111/j.1600-065X.2008.00745.x PubMed DOI
Samelson L. E., Phillips A. F., Luong E. T., Klausner R. D. (1990). Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor. Proc. Natl. Acad. Sci. U.S.A. 87, 4358–436210.1073/pnas.87.11.4358 PubMed DOI PMC
Schoenborn J. R., Tan Y. X., Zhang C., Shokat K. M., Weiss A. (2011). Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci. Signal. 4, ra59.10.1126/scisignal.2001893 PubMed DOI PMC
Schuck S., Honsho M., Ekroos K., Shevchenko A., Simons K. (2003). Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. U.S.A. 100, 5795–580010.1073/pnas.0631579100 PubMed DOI PMC
Seavitt J. R., White L. S., Murphy K. M., Loh D. Y., Perlmutter R. M., Thomas M. L. (1999). Expression of the p56(Lck) Y505F mutation in CD45-deficient mice rescues thymocyte development. Mol. Cell. Biol. 19, 4200–4208 PubMed PMC
Sharma P., Varma R., Sarasij R. C., Ira, Gousset K., Krishnamoorthy G., Rao M., Mayor S. (2004). Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–58910.1016/S0092-8674(04)00167-9 PubMed DOI
Shaw A. S. (2006). Lipid rafts: now you see them, now you don’t. Nat. Immunol. 7, 1139–114210.1038/ni1405 PubMed DOI
Sherman E., Barr V., Manley S., Patterson G., Balagopalan L., Akpan I., Regan C. K., Merrill R. K., Sommers C. L., Lippincott-Schwartz J., Samelson L. E. (2011). Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–72010.1016/j.immuni.2011.10.004 PubMed DOI PMC
Sicheri F., Moarefi I., Kuriyan J. (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–60910.1038/385602a0 PubMed DOI
Sigalov A. B. (2010). The SCHOOL of nature: I. Transmembrane signaling. Self Nonself 1, 4–39 PubMed PMC
Simons K., Ikonen E. (1997). Functional rafts in cell membranes. Nature 387, 569–57210.1038/42408 PubMed DOI
Simons K., Sampaio J. L. (2011). Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697.10.1101/cshperspect.a004697 PubMed DOI PMC
Simons K., Toomre D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–3910.1038/35036052 PubMed DOI
Smida M., Posevitz-Fejfar A., Horejsi V., Schraven B., Lindquist J. A. (2007). A novel negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched microdomains: blocking Ras activation. Blood 110, 596–61510.1182/blood-2006-07-038752 PubMed DOI
Smith-Garvin J. E., Koretzky G. A., Jordan M. S. (2009). T cell activation. Annu. Rev. Immunol. 27, 591–61910.1146/annurev.immunol.021908.132706 PubMed DOI PMC
Stone J. D., Conroy L. A., Byth K. F., Hederer R. A., Howlett S., Takemoto Y., Holmes N., Alexander D. R. (1997). Aberrant TCR-mediated signaling in CD45-null thymocytes involves dysfunctional regulation of Lck, Fyn, TCR-zeta, and ZAP-70. J. Immunol. 158, 5773–5782 PubMed
Straus D. B., Weiss A. (1992). Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70, 585–59310.1016/0092-8674(92)90428-F PubMed DOI
Sugie K., Jeon M. S., Grey H. M. (2004). Activation of naive CD4 T cells by anti-CD3 reveals an important role for Fyn in Lck-mediated signaling. Proc. Natl. Acad. Sci. U.S.A. 101, 14859–1486410.1073/pnas.0406168101 PubMed DOI PMC
Tang Q., Subudhi S. K., Henriksen K. J., Long C. G., Vives F., Bluestone J. A. (2002). The Src family kinase Fyn mediates signals induced by TCR antagonists. J. Immunol. 168, 4480–4487 PubMed
Tavano R., Contento R. L., Baranda S. J., Soligo M., Tuosto L., Manes S., Viola A. (2006). CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat. Cell Biol. 8, 1270–127610.1038/ncb1492 PubMed DOI
Tavano R., Gri G., Molon B., Marinari B., Rudd C. E., Tuosto L., Viola A. (2004). CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J. Immunol. 173, 5392–5397 PubMed
Tedoldi S., Paterson J. C., Hansmann M. L., Natkunam Y., Rudiger T., Angelisova P., Du M. Q., Roberton H., Roncador G., Sanchez L., Pozzobon M., Masir N., Barry R., Pileri S., Mason D. Y., Marafioti T., Horejsi V. (2006). Transmembrane adaptor molecules: a new category of lymphoid-cell markers. Blood 107, 213–22110.1182/blood-2005-06-2273 PubMed DOI
Trowbridge I. S., Thomas M. L. (1994). CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–11610.1146/annurev.iy.12.040194.000505 PubMed DOI
Vacaresse N., Moller B., Danielsen E. M., Okada M., Sap J. (2008). Activation of c-Src and Fyn kinases by protein-tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization. J. Biol. Chem. 283, 35815–3582410.1074/jbc.M807964200 PubMed DOI PMC
Van Laethem F., Sarafova S. D., Park J. H., Tai X., Pobezinsky L., Guinter T. I., Adoro S., Adams A., Sharrow S. O., Feigenbaum L., Singer A. (2007). Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27, 735–75010.1016/j.immuni.2007.10.007 PubMed DOI
van Oers N. S., Killeen N., Weiss A. (1996). Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J. Exp. Med. 183, 1053–106210.1084/jem.183.3.1053 PubMed DOI PMC
Veillette A., Latour S., Davidson D. (2002). Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20, 669–70710.1146/annurev.immunol.20.081501.130710 PubMed DOI
Viola A., Gupta N. (2007). Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat. Rev. Immunol. 7, 889–89610.1038/nri2193 PubMed DOI
Werlen G., Palmer E. (2002). The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr. Opin. Immunol. 14, 299–30510.1016/S0952-7915(02)00339-4 PubMed DOI
Williamson D. J., Owen D. M., Rossy J., Magenau A., Wehrmann M., Gooding J. J., Gaus K. (2011). Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–66210.1038/ni.2049 PubMed DOI
Wucherpfennig K. W., Gagnon E., Call M. J., Huseby E. S., Call M. E. (2010). Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb. Perspect. Biol. 2, a005140.10.1101/cshperspect.a005140 PubMed DOI PMC
Xu C., Gagnon E., Call M. E., Schnell J. R., Schwieters C. D., Carman C. V., Chou J. J., Wucherpfennig K. W. (2008). Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135, 702–71310.1016/j.cell.2008.09.044 PubMed DOI PMC
Xu W., Harrison S. C., Eck M. J. (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–60210.1038/385595a0 PubMed DOI
Yamaguchi H., Hendrickson W. A. (1996). Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–48910.1038/384484a0 PubMed DOI
Yasuda T., Bundo K., Hino A., Honda K., Inoue A., Shirakata M., Osawa M., Tamura T., Nariuchi H., Oda H., Yamamoto T., Yamanashi Y. (2007). Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int. Immunol. 19, 487–49510.1093/intimm/dxm015 PubMed DOI
Zamoyska R., Basson A., Filby A., Legname G., Lovatt M., Seddon B. (2003). The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol. Rev. 191, 107–11810.1034/j.1600-065X.2003.00015.x PubMed DOI
Zeyda M., Stulnig T. M. (2006). Lipid Rafts & Co.: an integrated model of membrane organization in T cell activation. Prog. Lipid Res. 45, 187–20210.1016/j.plipres.2006.01.002 PubMed DOI
Zhang W., Sommers C. L., Burshtyn D. N., Stebbins C. C., Dejarnette J. B., Trible R. P., Grinberg A., Tsay H. C., Jacobs H. M., Kessler C. M., Long E. O., Love P. E., Samelson L. E. (1999). Essential role of LAT in T cell development. Immunity 10, 323–33210.1016/S1074-7613(00)80032-1 PubMed DOI
Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event