Effects of ginkgoneolic acid on the growth, acidogenicity, adherence, and biofilm of Streptococcus mutans in vitro
Language English Country United States Media print-electronic
Document type Journal Article
- MeSH
- Anti-Bacterial Agents isolation & purification pharmacology MeSH
- Bacterial Adhesion drug effects MeSH
- Biofilms growth & development MeSH
- Ginkgo biloba chemistry MeSH
- Carboxylic Acids metabolism MeSH
- Microbial Sensitivity Tests MeSH
- Microbial Viability drug effects MeSH
- Plant Extracts isolation & purification pharmacology MeSH
- Saliva microbiology MeSH
- Streptococcus mutans drug effects growth & development metabolism physiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Carboxylic Acids MeSH
- Plant Extracts MeSH
Ginkgo biloba has long been used in traditional Chinese medicine. In this study, ginkgoneolic acid, a kind of compound extracted from G. biloba, was investigated for its effects on growth, acid production, adherence, biofilm formation, and biofilm morphology of Streptococcus mutans. The results showed that ginkgoneolic acid inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC(50) = 4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 % or more at low concentration (MBRC(50) = 32 μg/mL). Furthermore, the present study demonstrated that ginkgoneolic acid disrupted biofilm integrity effectively. These findings suggest that ginkgoneolic acid is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity.
See more in PubMed
Arch Oral Biol. 2007 Sep;52(9):869-75 PubMed
J Dent Res. 2001 Nov;80(11):2005-10 PubMed
Infect Immun. 1978 Mar;19(3):846-53 PubMed
Fitoterapia. 2009 Jan;80(1):18-20 PubMed
Caries Res. 2011;45(4):327-35 PubMed
FEMS Microbiol Lett. 2006 Apr;257(1):50-6 PubMed
Dent Mater. 2010 Aug;26(8):779-85 PubMed
Caries Res. 2004 May-Jun;38(3):254-7 PubMed
Lancet. 2007 Jan 6;369(9555):51-9 PubMed
J Antimicrob Chemother. 1998 Aug;42(2):153-60 PubMed
Antimicrob Agents Chemother. 2001 Nov;45(11):3009-13 PubMed
Scand J Dent Res. 1989 Apr;97(2):115-9 PubMed
Curr Opin Biotechnol. 2000 Oct;11(5):429-33 PubMed
J Appl Microbiol. 2000 Mar;88(3):546-53 PubMed
Caries Res. 2011;45(3):243-63 PubMed
Caries Res. 2011;45(2):162-73 PubMed
Adv Dent Res. 2009;21(1):4-7 PubMed
Community Dent Oral Epidemiol. 1999 Feb;27(1):31-40 PubMed
Caries Res. 2004 May-Jun;38(3):173-81 PubMed
Antimicrob Agents Chemother. 1987 Oct;31(10):1502-6 PubMed
J Dent Res. 1989 May;68(5):750-60 PubMed
Appl Environ Microbiol. 1993 Apr;59(4):968-73 PubMed
J Dent Res. 1984 Mar;63(3):407-11 PubMed
Antimicrob Agents Chemother. 2002 May;46(5):1302-9 PubMed
BioDrugs. 2001;15(8):501-8 PubMed
J Dent Res. 2006 Oct;85(10):878-87 PubMed
Phytother Res. 2007 Nov;21(11):1061-5 PubMed
Int J Oral Sci. 2011 Apr;3(2):55-65 PubMed
J Dent Educ. 2001 Oct;65(10):1106-9 PubMed
J Ethnopharmacol. 2004 Jun;92(2-3):281-9 PubMed
Zhong Yao Cai. 2004 Sep;27(9):661-3 PubMed
Antimicrob Agents Chemother. 2011 Mar;55(3):1229-36 PubMed
J Am Dent Assoc. 2000 Jul;131(7):887-99 PubMed
Caries Res. 2008;42(2):148-54 PubMed
Microbiol Res. 2012 Jan 20;167(2):61-8 PubMed
Chemotherapy. 2010;56(5):393-402 PubMed
Community Dent Oral Epidemiol. 2005 Aug;33(4):248-55 PubMed
Arch Oral Biol. 2012 Jun;57(6):678-83 PubMed
Science. 1999 May 21;284(5418):1318-22 PubMed
Clin Microbiol Rev. 2002 Apr;15(2):167-93 PubMed
Dent Clin North Am. 2010 Jul;54(3):441-54 PubMed
Antimicrob Agents Chemother. 1985 Apr;27(4):619-24 PubMed