Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations
Language English Country Spain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Adenosine analogs & derivatives pharmacology MeSH
- Adenosine A3 Receptor Agonists pharmacology MeSH
- CHO Cells MeSH
- Cricetulus MeSH
- Cytotoxins pharmacology MeSH
- Cell Cycle Checkpoints drug effects MeSH
- Humans MeSH
- Mitogen-Activated Protein Kinase 1 antagonists & inhibitors genetics metabolism MeSH
- Mitogen-Activated Protein Kinase 3 antagonists & inhibitors genetics metabolism MeSH
- Cell Proliferation drug effects MeSH
- Proto-Oncogene Proteins c-akt genetics metabolism MeSH
- Receptor, Adenosine A3 genetics metabolism MeSH
- Gene Expression Regulation MeSH
- Signal Transduction drug effects MeSH
- Transfection MeSH
- Cell Survival drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide MeSH Browser
- Adenosine MeSH
- Adenosine A3 Receptor Agonists MeSH
- Cytotoxins MeSH
- MAPK1 protein, human MeSH Browser
- Mitogen-Activated Protein Kinase 1 MeSH
- Mitogen-Activated Protein Kinase 3 MeSH
- N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine MeSH Browser
- Proto-Oncogene Proteins c-akt MeSH
- Receptor, Adenosine A3 MeSH
The question as to whether A3 adenosine receptor (A3AR) agonists, N (6)-(3-iodobenzyl)-adenosine-5'-N- methyluronamide (IB-MECA) and 2-chloro-N (6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), could exert cytotoxic effects at high concentrations with or without the involvement of A3AR has been a controversial issue for a long time. The initial findings suggesting that A3AR plays a crucial role in the induction of cell death upon treatment with micromolar concentrations of IB-MECA or Cl-IB-MECA were revised, however, the direct and unequivocal evidence is still missing. Therefore, the sensitivity of Chinese hamster ovary (CHO) cells transfected with human recombinant A3AR (A3-CHO) and their counter partner wild-type CHO cells, which do not express any of adenosine receptors, to micromolar concentrations of IB-MECA and Cl-IB-MECA was studied. We observed that IB-MECA and Cl-IB-MECA exhibited a strong inhibitory effect on cell proliferation due to the blockage of cell cycle progression at G1/S and G2/M transitions in both A3-CHO and CHO cells. Further analysis revealed that IB-MECA and Cl-IB-MECA attenuated the Erk1/2 signalling irrespectively to A3AR expression. In addition, Cl-IB-MECA induced massive cell death mainly with hallmarks of a necrosis in both cell lines. In contrast, IB-MECA affected cell viability only slightly independently of A3AR expression. IB-MECA induced cell death that exhibited apoptotic hallmarks. In general, the sensitivity of A3-CHO cells to micromolar concentrations of IB-MECA and Cl-IB-MECA was somewhat, but not significantly, higher than that observed in the CHO cells. These results strongly suggest that IB-MECA and Cl-IB-MECA exert cytotoxic effects at micromolar concentrations independently of A3AR expression.
See more in PubMed
Exp Hematol. 2002 Dec;30(12):1390-8 PubMed
Pharmacol Ther. 2008 Jan;117(1):123-40 PubMed
J Med Chem. 1994 Oct 14;37(21):3614-21 PubMed
J Immunol Methods. 1983 Dec 16;65(1-2):55-63 PubMed
Chem Biol Interact. 1999 Feb 12;117(3):219-39 PubMed
Pharmacol Rev. 1994 Jun;46(2):143-56 PubMed
Biochem Pharmacol. 2001 Feb 15;61(4):443-8 PubMed
Toxicol In Vitro. 2009 Dec;23(8):1482-90 PubMed
Handb Exp Pharmacol. 2009;(193):297-327 PubMed
Toxicol In Vitro. 2010 Dec;24(8):2079-83 PubMed
Exp Cell Res. 2000 May 25;257(1):111-26 PubMed
Eur J Pharmacol. 1994 Sep 22;263(1-2):59-67 PubMed
J Cell Physiol. 2000 Jun;183(3):393-8 PubMed
Mol Pharmacol. 2001 Jan;59(1):76-82 PubMed
Pharmacol Ther. 2003 Oct;100(1):31-48 PubMed
J Med Chem. 1994 Mar 4;37(5):636-46 PubMed
Cancer Res. 2003 Oct 1;63(19):6413-23 PubMed
Cell Physiol Biochem. 2012;30(1):210-20 PubMed
Neurochem Res. 2012 Dec;37(12):2667-77 PubMed
Cell Death Differ. 2007 Jul;14(7):1315-23 PubMed
Jpn J Pharmacol. 1998 Oct;78(2):113-45 PubMed
Mol Pharmacol. 2000 Sep;58(3):477-82 PubMed
Exp Cell Res. 1998 Sep 15;243(2):383-97 PubMed
Acta Physiol (Oxf). 2010 Jun;199(2):171-9 PubMed
J Mol Neurosci. 2001 Dec;17(3):285-92 PubMed
Handb Exp Pharmacol. 2009;(193):399-441 PubMed
J Mol Cell Cardiol. 2002 May;34(5):493-507 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2000 Mar;361(3):225-34 PubMed
Cytometry. 1992;13(8):795-808 PubMed
Biochem Pharmacol. 2002 Mar 1;63(5):871-80 PubMed
Anticancer Drugs. 2002 Jun;13(5):437-43 PubMed
J Cell Physiol. 2012 Feb;227(2):676-85 PubMed
Trends Biochem Sci. 1993 Apr;18(4):128-31 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2000 Nov;362(4-5):364-74 PubMed
Biochem Pharmacol. 2004 Jan 1;67(1):129-34 PubMed
Eur J Pharmacol. 2001 Feb 16;413(2-3):151-61 PubMed
Adv Exp Med Biol. 2000;486:201-5 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 1998 Jan;357(1):1-9 PubMed
Cell Physiol Biochem. 2012;29(5-6):687-96 PubMed
Biochem Pharmacol. 2005 Sep 15;70(6):918-24 PubMed
Cancer Lett. 2008 Jun 18;264(2):309-15 PubMed
Mol Pharmacol. 2002 Nov;62(5):1137-46 PubMed
Oncogene. 2002 Jun 6;21(25):4060-4 PubMed
Trends Pharmacol Sci. 1998 May;19(5):184-91 PubMed
J Cell Physiol. 2001 Jan;186(1):19-23 PubMed
J Cell Biochem. 2001;83(4):678-89 PubMed
Biochem Biophys Res Commun. 1996 Feb 27;219(3):904-10 PubMed
Cancer Biol Ther. 2008 Feb;7(2):278-84 PubMed