Peroxisome proliferator-activated receptors in regulation of cytochromes P450: new way to overcome multidrug resistance?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23193364
PubMed Central
PMC3492927
DOI
10.1155/2012/656428
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- chemorezistence * MeSH
- lidé MeSH
- mnohočetná léková rezistence * MeSH
- receptory aktivované proliferátory peroxizomů metabolismus MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- receptory aktivované proliferátory peroxizomů MeSH
- systém (enzymů) cytochromů P-450 MeSH
Embryonic and tumour cells are able to protect themselves against various harmful compounds. In human pathology, this phenomenon exists in the form of multidrug resistance (MDR) that significantly deteriorates success of anticancer treatment. Cytochromes P450 (CYPs) play one of the key roles in the xenobiotic metabolism. CYP expression could contribute to resistance of cancer cells to chemotherapy. CYP epoxygenases (CYP2C and CYP2J) metabolize about 20% of clinically important drugs. Besides of drug metabolism, CYP epoxygenases and their metabolites play important role in embryos, normal body function, and tumors. They participate in angiogenesis, mitogenesis, and cell signaling. It was found that CYP epoxygenases are affected by peroxisome proliferator-activated receptor α (PPARα). Based on the results of current studies, we assume that PPARs ligands may regulate CYP2C and CYP2J and in some extent they may contribute to overcoming of MDR in patients with different types of tumours.
Zobrazit více v PubMed
Baugley BC. Multidrug resistance in cancer. In: Zhou J, editor. Multidrug Resistance in Cancer (Methods in Molecular Biology) New York, NY, USA: Humana Press; 2010. pp. 1–14.
Konieczna A, Lichnovka R, Erdosova B, Ehrmann J. The role of PPARs in MDR—a lesson from embryonic development. Neoplasma. 2009;56(4):279–283. PubMed
Pozzi A, Popescu V, Yang S, et al. The anti-tumorigenic properties of peroxisomal proliferator-activated receptor α are arachidonic acid epoxygenase-mediated. The Journal of Biological Chemistry. 2010;285(17):12840–12850. PubMed PMC
Sahi J, Black CB, Hamilton GA, et al. Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metabolism and Disposition. 2003;31(4):439–446. PubMed
Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology. 2008;81(4):275–300. PubMed
Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. In: Zhou J, editor. Multidrug Resistance in Cancer (Methods in Molecular Biology) New York, NY, USA: Humana Press; 2010. pp. 47–76. PubMed
Brown CM, Reisfeld B, Mayeno AN. Cytochromes P450: a structure-based summary of biotransformations using representative substrates. Drug Metabolism Reviews. 2008;40(1):1–100. PubMed
Barbier O, Fontaine C, Fruchart JC, Staels B. Genomic and non-genomic interactions of PPARα with xenobiotic-metabolizing enzymes. Trends in Endocrinology and Metabolism. 2004;15(7):324–330. PubMed
Nelson DR. The cytochrome P450 homepage. Human Genomics. 2009;4(1):59–65. PubMed PMC
Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. Journal of Pharmacology and Experimental Therapeutics. 2004;308(3):965–974. PubMed
Scripture CD, Sparreboom A, Figg WD. Modulation of cytochrome P450 activity: implications for cancer therapy. The Lancet Oncology. 2005;6(10):780–789. PubMed
Lee CA, Neul D, Clouser-Roche A, et al. Identification of novel substrates for human cytochrome P450 2J2. Drug Metabolism and Disposition. 2010;38(2):347–356. PubMed
McFadyen MCE, Melvin WT, Murray GI. Cytochrome P450 enzymes: novel options for cancer therapeutics. Molecular Cancer Therapeutics. 2004;3(3):363–371. PubMed
Panigrahy D, Kaipainen A, Greene ER, Huang S. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Reviews. 2010;29(4):723–735. PubMed PMC
Yan G, Chen S, You B, Sun J. Activation of sphingosine kinase-1 mediates induction of endothelial cell proliferation and angiogenesis by epoxyeicosatrienoic acids. Cardiovascular Research. 2008;78(2):308–314. PubMed
Webler AC, Popp R, Korff T, et al. Cytochrome P450 2C9-indiiced angiogenesis is dependent on EphB4. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(6):1123–1129. PubMed
Cheranov SY, Karpurapu M, Wang D, Zhang B, Venema RC, Rao GN. An essential role for SRC-activated STAT-3 in 14, 15-EET-induced VEGF expression and angiogenesis. Blood. 2008;111(12):5581–5591. PubMed PMC
Webler AC, Michaelis UR, Popp R, et al. Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American Journal of Physiology. 2008;295(5):C1292–C1301. PubMed PMC
Jiang JG, Ning YG, Chen C, et al. Cytochrome P450 epoxygenase promotes human cancer metastasis. Cancer Research. 2007;67(14):6665–6674. PubMed
Shen GF, Jiang JG, Fu XN, Wang DW. Promotive effects of epoxyeicosatrienoic acids (EETs) on proliferation of tumor cells. Chinese Journal of Cancer. 2008;27(11):1130–1136. PubMed
Bystrom J, Wray JA, Sugden MC, et al. Endogenous epoxygenases are modulators of monocyte/macrophage activity. PLoS ONE. 2011;6(10)e26591 PubMed PMC
Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics. 1997;7(6):441–452. PubMed
Enayetallah AE, French RA, Thibodeau MS, Grant DF. Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. Journal of Histochemistry and Cytochemistry. 2004;52(4):447–454. PubMed
Leclerc J, Tournel G, Ngangue ECN, et al. Profiling gene expression of whole cytochrome P450 superfamily in human bronchial and peripheral lung tissues: differential expression in non-small cell lung cancers. Biochimie. 2010;92(3):292–306. PubMed
Bièche I, Narjoz C, Asselah T, et al. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenetics and Genomics. 2007;17(9):731–742. PubMed
DeLoia JA, Zamboni WC, Jones JM, Strychor S, Kelley JL, Gallion HH. Expression and activity of taxane-metobolizing enzymes in ovarian tumors. Gynecologic Oncology. 2008;108(2):355–360. PubMed
Gaedigk A, Baker DW, Totah RA, et al. Variability of CYP2J2 expression in human fetal tissues. Journal of Pharmacology and Experimental Therapeutics. 2006;319(2):523–532. PubMed PMC
Jiang JG, Chen CL, Card JW, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research. 2005;65(11):4707–4715. PubMed
Enayetallah AE, French RA, Grant DF. Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology. 2006;37(3-4):133–141. PubMed
Freedman RS, Wang E, Voiculescu S, et al. Comparative analysis of peritoneum and tumor eicosanoids and pathways in advanced ovarian cancer. Clinical Cancer Research. 2007;13(19):5736–5744. PubMed
Chen C, Wei X, Rao X, et al. Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. Journal of Pharmacology and Experimental Therapeutics. 2011;336(2):344–355. PubMed PMC
Vanden Heuvel JP, Peters JM. Peroxisome proliferator-activated receptors. In: McQueen CA, Bond J, Ramos K, et al., editors. Comprehensive Toxicology (Cellular and Molecular Toxicology) Vol. 2. New York, NY, USA: Elsevier; 2010. pp. 145–167. http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=3459&VerticalID=0.
Chen Y, Jimenez AR, Medh JD. Identification and regulation of novel PPAR-γ splice variants in human THP-1 macrophages. Biochimica et Biophysica Acta. 2006;1759(1-2):32–43. PubMed PMC
Kota BP, Huang THW, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacological Research. 2005;51(2):85–94. PubMed
Burns KA, Vanden Heuvel JP. Modulation of PPAR activity via phosphorylation. Biochimica et Biophysica Acta. 2007;1771(8):952–960. PubMed PMC
Rees WD, McNeil CJ, Maloney CA. The roles of PPARs in the fetal origins of metabolic health and disease. PPAR Research. 2008;2008:8 pages.459030 PubMed PMC
Nadra K, Anghel SI, Joye E, et al. Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor β/δ. Molecular and Cellular Biology. 2006;26(8):3266–3281. PubMed PMC
Barak Y, Nelson MC, Ong ES, et al. PPARγ is required for placental, cardiac, and adipose tissue development. Molecular Cell. 1999;4(4):585–595. PubMed
Kubota N, Terauchi Y, Miki H, et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Molecular Cell. 1999;4(4):597–609. PubMed
Michalik L, Wahli W. Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochimica et Biophysica Acta. 2007;1771(8):991–998. PubMed
Hall MG, Quignodon L, Desvergne B. Peroxisome proliferator-activated receptor β/δ in the brain: facts and hypothesis. PPAR Research. 2008;2008:10 pages.780452 PubMed PMC
Huin C, Corriveau L, Bianchi A, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs) in the developing human fetal digestive tract. Journal of Histochemistry and Cytochemistry. 2000;48(5):603–611. PubMed
Fournier T, Tsatsaris V, Handschuh K, Evain-Brion D. PPARs and the placenta. Placenta. 2007;28(2-3):65–76. PubMed
Abbott BD, Wood CR, Watkins AM, Das KP, Lau CS. Peroxisome proliferator-activated receptors alpha, beta, and gamma mRNA and protein expression in human fetal tissues. PPAR Research. 2010;2010:19 pages.690907 PubMed PMC
Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Research. 2010;2010:20 pages.612089 PubMed PMC
Richert L, Tuschl G, Viollon-Abadie C, et al. Species differences in the response of liver drug-metabolizing enzymes to (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949) in vivo and in vitro. Drug Metabolism and Disposition. 2008;36(4):702–714. PubMed
Shaban Z, Soliman M, El-Shazly S, et al. AhR and PPARα: antagonistic effects on CYP2B and CYP3A, and additive inhibitory effects on CYP2C11. Xenobiotica. 2005;35(1):51–68. PubMed
Večeřa R, Zachařová A, Orolin J, Strojil J, Škottová N, Anzenbacher P. Fenofibrate-induced decrease of expression of CYP2C11 and CYP2C6 in rat. Biopharmaceutics & Drug Disposition. 2011;32(8):482–487. PubMed
Zhao X, Li LY. PPAR-alpha agonist fenofibrate induces renal CYP enzymes and reduces blood pressure and glomerular hypertrophy in Zucker diabetic fatty rats. American Journal of Nephrology. 2008;28(4):598–606. PubMed
Pozzi A, Ibanez MR, Gatica AE, et al. Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis. The Journal of Biological Chemistry. 2007;282(24):17685–17695. PubMed
Wray JA, Sugden MC, Zeldin DC, et al. The epoxygenases CYP2J2 activates the nuclear receptor PPARα in vitro and in vivo. PLoS ONE. 2009;4(10)e7421 PubMed PMC
Ng VY, Huang Y, Reddy LM, Falck JR, Lin ET, Kroetz DL. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor α. Drug Metabolism and Disposition. 2007;35(7):1126–1134. PubMed
Prueksaritanont T, Richards KM, Qiu Y, et al. Comparative effects of fibrates on drug metabolizing enzymes in human hepatocytes. Pharmaceutical Research. 2005;22(1):71–78. PubMed