Pepsin digest of wheat gliadin fraction increases production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB signaling pathway and an NLRP3 inflammasome activation
Language English Country United States Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23658628
PubMed Central
PMC3639175
DOI
10.1371/journal.pone.0062426
PII: PONE-D-13-00650
Knihovny.cz E-resources
- MeSH
- Adaptor Proteins, Vesicular Transport genetics immunology MeSH
- Celiac Disease MeSH
- Adult MeSH
- Gliadin chemistry immunology MeSH
- Inflammasomes drug effects genetics immunology MeSH
- Interleukin-1beta genetics immunology MeSH
- Leukocytes, Mononuclear drug effects immunology pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Mitogen-Activated Protein Kinases genetics immunology MeSH
- Myeloid Differentiation Factor 88 genetics immunology MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Pepsin A MeSH
- Peptide Fragments pharmacology MeSH
- Primary Cell Culture MeSH
- NLR Family, Pyrin Domain-Containing 3 Protein MeSH
- Gene Expression Regulation drug effects immunology MeSH
- Signal Transduction drug effects genetics immunology MeSH
- Toll-Like Receptor 2 genetics immunology MeSH
- Toll-Like Receptor 4 genetics immunology MeSH
- Carrier Proteins genetics immunology MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adaptor Proteins, Vesicular Transport MeSH
- Gliadin MeSH
- Inflammasomes MeSH
- Interleukin-1beta MeSH
- Mitogen-Activated Protein Kinases MeSH
- MYD88 protein, human MeSH Browser
- Myeloid Differentiation Factor 88 MeSH
- NLRP3 protein, human MeSH Browser
- Pepsin A MeSH
- Peptide Fragments MeSH
- NLR Family, Pyrin Domain-Containing 3 Protein MeSH
- TICAM1 protein, human MeSH Browser
- TLR2 protein, human MeSH Browser
- TLR4 protein, human MeSH Browser
- Toll-Like Receptor 2 MeSH
- Toll-Like Receptor 4 MeSH
- Carrier Proteins MeSH
Celiac disease (CD) is a gluten-responsive, chronic inflammatory enteropathy. IL-1 cytokine family members IL-1β and IL-18 have been associated with the inflammatory conditions in CD patients. However, the mechanisms of IL-1 molecule activation in CD have not yet been elucidated. We show in this study that peripheral blood mononuclear cells (PBMC) and monocytes from celiac patients responded to pepsin digest of wheat gliadin fraction (PDWGF) by a robust secretion of IL-1β and IL-1α and a slightly elevated production of IL-18. The analysis of the upstream mechanisms underlying PDWGF-induced IL-1β production in celiac PBMC show that PDWGF-induced de novo pro-IL-1β synthesis, followed by a caspase-1 dependent processing and the secretion of mature IL-1β. This was promoted by K+ efflux and oxidative stress, and was independent of P2X7 receptor signaling. The PDWGF-induced IL-1β release was dependent on Nod-like receptor family containing pyrin domain 3 (NLRP3) and apoptosis-associated speck like protein (ASC) as shown by stimulation of bone marrow derived dendritic cells (BMDC) from NLRP3(-/-) and ASC(-/-) knockout mice. Moreover, treatment of human PBMC as well as MyD88(-/-) and Toll-interleukin-1 receptor domain-containing adaptor-inducing interferon-β (TRIF)(-/-) BMDC illustrated that prior to the activation of caspase-1, the PDWGF-triggered signal constitutes the activation of the MyD88/TRIF/MAPK/NF-κB pathway. Moreover, our results indicate that the combined action of TLR2 and TLR4 may be required for optimal induction of IL-1β in response to PDWGF. Thus, innate immune pathways, such as TLR2/4/MyD88/TRIF/MAPK/NF-κB and an NLRP3 inflammasome activation are involved in wheat proteins signaling and may play an important role in the pathogenesis of CD.
See more in PubMed
Stepniak D, Koning F (2006) Celiac disease-sandwich between innate and adaptive immunity. Humm Immunol 67: 460–468. PubMed
Sollid LM (20020) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2: 647–655. PubMed
Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, et al... (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 10.1084/jem.20102660. PubMed PMC
Jabri B, Sollid LM (2009) Tissue mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9: 858–870. PubMed
Mention JJ, Ben Ahmed M, Bégue B, Barbe U, Verkarre V (2003) Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125: 730–45. PubMed
Thomas KE, Sapone A, Fasano A, Vogel SN (2006) Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88–dependent: the role of the innate immune response in celiac disease. J Immunol 176: 7512–2521. PubMed
Harris KM, Fasano A, Mann DL (2008) Cutting Edge: IL-1 controls the IL-23 response induced by gliadin, the etiologic agent in celiac disease. J Immunol 181: 4457–4460. PubMed
Manavalan JS, Hernandez L, Shah JG, Konikkara J, Naiyer AJ, et al. (2010) Serum cytokine elevations in celiac disease: association with disease presentation. Humm Immunol 71: 50–57. PubMed
Beckett CG, Dell’Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ (1999) Gluten-induced nitric oxide and pro-inflammatory cytokine release by cultured coeliac small intestinal biopsies. Eur J Gastroenterol Hepatol 11: 529–535. PubMed
Schroder K, Tschopp J (2010) The inflammasomes. Cell 140: 821–832. PubMed
Latz E (2010) The inflammasomes: Mechanisms of activation and function. Curr Opin Immunol 22: 28–33. PubMed PMC
Martinon F, Agostini L, Meyalan E, Tschopp J (2004) Identification of bacterial muramyl dipeptid as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14: 1929–1934. PubMed
Kanneganti T, Ozören N, Body-Malapel M, Amer A, Park JH, et al. (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440: 233–236. PubMed
McCoy AJ, Koizumi Y, Higa N, Suzuki T (2010) Differential regulation of caspase-1 activation via NLRP3/NLRC4 inflammasomes mediated by aerolysin and type III secretion system during Aeromonas veronii infection. J Immunol 185: 7077–7087. PubMed
Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, et al. (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361. PubMed PMC
Hogquist KA, Nett MA, Unanue ER, Chaplin DD (1991) Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci U S A 88: 8485–8489. PubMed PMC
Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7: 31–40. PubMed
Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, et al. (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113: 2324–2335. PubMed PMC
Netea MG, Simon A, van de Veerdonk F, Kullberg BJ, van de Meer JW, et al. (2010) IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog 6: e1000661. PubMed PMC
Piccini A, Carta S, Tassi S, Lasiglié D, Fossati G, et al. (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci U S A 105: 8067–8072. PubMed PMC
Garrote JA, Gómez-González G, Bernardo D, Arranz E, Chirdo F (2008) Celiac disease pathogenesis: the proinflammatory cytokine network. J Pediatr Gastroenterol Nutr 47 (Supp (1)): S27–32. PubMed
Tuckova L, Flegelová Z, Tlaskalová-Hogenová H, Zídek Z (2000) Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. J Leukoc Biol 67: 312–328. PubMed
Cinova J, Palova-Jelinkova L, Smythies LE, Cerna M, Pecharova B, et al. (2007) Gliadin peptides activate blood monocytes from patients with celiac disease. J Clin Immunol 27: 201–209. PubMed
Palova-Jelinkova L, Rozkova D, Pecharova B, Bartova J, Sediva A, et al. (2005) Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 175: 7038–7045. PubMed
Miller S, Dyker D, Poleshy G (1988) Simple salting-out procedure for extracting DNA from human nucleated cells. Nucl Acid Res 16: 1215. PubMed PMC
Chartrand LJ, Russo PA, Duhaime AG, Seidman EG (1997) Wheat starch intolerance in patients with celiac disease. J Am Die Assoc 97: 612–18. PubMed
Matysiak-Budnik T, Dugave C, Namane A, Celier C, Cerf-Bensussan N, et al. (2003) Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology 125: 696–07. PubMed
Mazzarella G, Maglio M, Paparo F, Nardone G, Stefanile R, et al. (2003) An immunodominant DQ8 restricted gliadin peptide activates small intestinal immune response in in vitro cultured mucosa from HLA-DQ8 positive but not HLA-DQ8 negative celiac patients. Gut 52: 57–62. PubMed PMC
Allam R, Darisipudi MN, Rupanagudi KV, Lichtnekert J, Tschopp J, et al. (2011) Cutting Edge: Cyclic polypeptides and aminoglycoside antibiotics trigger IL-1b secretion by activating the NLRP3 inflammasome. J Immunol 186: 2714–2718. PubMed
Franchi L, Kanneganti TD, Dubyak GR, Nunez G (2007) Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 282: 18810–18818. PubMed
Salvati VM, MacDonald TT, Bajaj-Elliott M, Borelli M, Staiano A, et al. (2002) Interleukin 18 and associated markers of T helper cell type 1 activity in coliac disease. Gut 50: 186–190. PubMed PMC
Pontillo A, Brandao L, Guimaraes R, Segat L, Araujo J, et al. (2010) Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil. Autoimmunity 43: 583–589. PubMed
Pontillo A, Vendramin A, Catamo E, Fabris A, Crovella S (2011) The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease. Am J Gastroenterol 106: 539–544. PubMed
Ward JR, West PW, Ariaans MP, Parker LC, Francis SE, et al. (2010) Temporal interleukin-1beta secretion from primary human peripheral blood monocytes by P2X7-independent and P2X7-dependent mechanisms. J Biol Chem 285: 23147–23158. PubMed PMC
Chladkova B, Kamanova J, Palova-Jelinkova L, Cinova J, Sebo P, et al. (2011) Gliadin fragments promote migration of dendritic cells. J Cell Mol Med 15: 938–948. PubMed PMC
Shan L, Molberg O, Parrot I, Hausch F, Filiz F, et al. (2002) Structural basis for gluten intolerance in celiac sprue. Science 297: 22754–2279. PubMed
Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, et al. (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 5: 30–37. PubMed
Londei M, Ciacci C, Ricciardelli I, Vacca L, Quaratino S, et al. (2005) Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol 42: 913–918. PubMed
Barone MV, Zanzi D, Maglio M, Nanayakkara M, Santagata S, et al. (2011) Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS One 6(2): e17039 doi: 10.1371/journal.pone.0017039. PubMed DOI PMC
Lammers KM, Lu R, Brownley J, Gerard C, Thomas K, et al. (2003) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastoenterology 135: 194–204. PubMed PMC
Nikulina M, Habich C, Flohe SB, Scott FW, Kolb H (2004) Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol 173: 1925–1933. PubMed
Martin S, Dudda JC, Bachtanian E, Lembo A, Liller S, et al. (2008) Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J Exp Med 205: 2151–2162. PubMed PMC
Jiang D, Liang J, Fan JE, Yu S, Chen S, et al. (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11: 1173–1179. PubMed
Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, et al. (2007) Increased mucosal expression of Toll like receptor (TLR)2 and TLR4 in celiac disease. J Pediatr Gastroenterol Nutr 45: 187–193. PubMed
Cseh A, Vásárhelyi B, Szalay B, Molnár K, Nagy-Szakál D, et al. (2011) Immune phenotype of children with newly diagnosed and gluten-free diet treated celiac disease. Dig Dis Sci 56: 792–798. PubMed
Kalliomäki M, Satokari R, Lähteenoja H, Vähämiko S, Grönlund J, et al. (2012) Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr 54: 727–732. PubMed
Freudenberg M, Tchaptchet S, Keck S, Fejer G, Schutze N, et al. (2008) Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity. Immunobiology 213: 193–203. PubMed