Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23956395
PubMed Central
PMC3811198
DOI
10.1128/aem.02135-13
PII: AEM.02135-13
Knihovny.cz E-zdroje
- MeSH
- DNA fungální chemie genetika MeSH
- houby klasifikace genetika růst a vývoj MeSH
- kořeny rostlin mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- mykorhiza klasifikace genetika růst a vývoj MeSH
- počet mikrobiálních kolonií MeSH
- sekvenční analýza DNA MeSH
- společenstvo * MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
Communities of arbuscular mycorrhizal fungi (AMF) are crucial for promoting plant productivity in most terrestrial systems, including anthropogenically managed ecosystems. Application of AMF inocula has therefore become a widespread practice. It is, however, pertinent to understand the mechanisms that govern AMF community composition and their performance in order to design successful manipulations. Here we assess whether the composition and plant growth-promotional effects of a synthetic AMF community can be altered by inoculum additions of the isolates forming the community. This was determined by following the effects of three AMF isolates, each inoculated in two propagule densities into a preestablished AMF community. Fungal abundance in roots and plant growth were evaluated in three sequential harvests. We found a transient positive response in AMF abundance to the intraspecific inoculation only in the competitively weakest isolate. The other two isolates responded negatively to intra- and interspecific inoculations, and in some cases plant growth was also reduced. Our results suggest that increasing the AMF density may lead to increased competition among fungi and a trade-off with their ability to promote plant productivity. This is a key ecological aspect to consider when introducing AMF into soils.
Zobrazit více v PubMed
van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72
Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633 PubMed
Smith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3rd ed. Academic Press, Amsterdam, Netherlands
Vosátka M, Látr A, Gianinazzi S, Albrechtová J. 2012. Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37
Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET. 2013. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol. 197:1104–1109 PubMed
Hart MM, Reader RJ. 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 153:335–344
Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. 2009. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. R. Soc. B Biol. Sci. 276:4237–4245 PubMed PMC
Koide RT. 2000. Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol. 147:233–235
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882 PubMed
Wagg C, Jansa J, Schmid B, van der Heijden MGA. 2011. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. 14:1001–1009 PubMed
Pearson JN, Abbott LK, Jasper DA. 1994. Phosphorus, soluble carbohydreates and the competition between 2 arbuscular mycorrhizal fungi clonizing subterranean clover. New Phytol. 127:101–106 PubMed
Bennett AE, Bever JD. 2009. Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia 160:807–816 PubMed
Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M. 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12:13–21 PubMed
Graham JH, Abbott LK. 2000. Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207–218
Mummey DL, Antunes PM, Rillig MC. 2009. Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biol. Biochem. 41:1173–1179
Koch AM, Antunes PM, Barto EK, Cipollini D, Mummey DL, Klironomos JN. 2011. The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol. Invasions 13:1627–1639
Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M. 2011. Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol. Biochem. 43:367–376
Alkan N, Gadkar V, Yarden O, Kapulnik Y. 2006. Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl. Environ. Microbiol. 72:4192–4199 PubMed PMC
Thonar C. 2009. Synthetic mycorrhizal communities: establishment and functioning. Ph.D. dissertation. ETH Zürich, Zürich, Switzerland.10.3929/ethz-a-005927506 DOI
Gustafson DJ, Casper BB. 2006. Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecol. 183:257–263
Gryndler M, Sudová R, Püschel D, Rydlová J, Janoušková M, Vosátka M. 2008. Cultivation of high-biomass crops on coal mine spoil banks: can microbial inoculation compensate for high doses of organic matter? Bioresour. Technol. 99:6391–6399 PubMed
Krak K, Janoušková M, Caklová P, Vosátka M, Scarontorchová H. 2012. Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA. Appl. Environ. Microbiol. 78:3630–3637 PubMed PMC
Enkhtuya B, Rydlová J, Vosatká M. 2000. Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl. Soil Ecol. 14:201–211
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876–4882 PubMed PMC
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis suite. Nucleic Acids Symp. Ser. 41:95–98
Swofford DL. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods), 4th ed. Sinauer Associates, Sunderland, MA
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. 2007. Primer3Plus, an enhanced Web interface to Primer3. Nucleic Acids Res. 35:W71–W74 PubMed PMC
Kalendar R, Lee D, Schulman AH. 2011. Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98:137–144 PubMed
Alexander M. 1965. Most-probable-number method for microbial populations, p 1467–1472 In Black SA, Evans DD, Ensminger LE, White JL, Clark FE. (ed), Methods of soil analysis, part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, WI
Gryndler M, Vejsadová H, Vančura V. 1992. The effect of magnesium ions on the vesicular arbuscular mycorrhizal infection of maize roots. New Phytol. 122:455–460 PubMed
Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92:486–505
Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionnelle, p 217–221 In Gianinazzi-Pearson V, Gianinazzi S. (ed), Physiological and genetical aspects of mycorrhizae. INRA, Paris, France
Armas C, Ordiales R, Pugnaire FI. 2004. Measuring plant interactions: a new comparative index. Ecology 85:2682–2686
Vogelsang KM, Reynolds HL, Bever JD. 2006. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172:554–562 PubMed
Jansa J, Smith FA, Smith SE. 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol. 177:779–789 PubMed
Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13:394–407 PubMed
Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes? J. Ecol. 98:419–428
Corradi N, Croll D, Colard A, Kuhn G, Ehinger M, Sanders IR. 2007. Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Appl. Environ. Microbiol. 73:366–369 PubMed PMC
Gazey C, Abbott LK, Robson AD. 2004. Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from south-western Australia. Mycorrhiza 14:355–362 PubMed
Wilson JM, Trinick MJ. 1983. Infection development and interactions between vesicular-arbuscular mycorrhizal fungi. New Phytol. 93:543–553
Wilson GWT, Tommerup IC. 1992. Interactions between fungal symbionts. VA mycorrhizae, p 199–248 In Allen M. (ed), Mycorrhizal functioning: an integrative plant-fungal process. Springer, Berlin, Germany
Tisserant B, Gianinazzi S, GianinazziPearson V. 1996. Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can. J. Bot. Rev. Can. Bot. 74:1947–1955
Wilson JM. 1984. Competition for infection between vesicular arbuscular mycorrhizal fungi. New Phytol. 97:427–435
Haas JH, Krikun J. 1985. Efficacy of endomycorrhizal-fungus isolates and inoculum quantities required for growth response. New Phytol. 100:613–621
Al-Karaki GN, Clark RB. 1999. Varied rates of mycorrhizal inoculum on growth and nutrient acquisition by barley grown with drought stress. J. Plant Nutrit. 22:1775–1784
Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339
Gange AC, Ayres RL. 1999. On the relation between arbuscular mycorrhizal colonization and plant ‘benefit.' Oikos 87:615–621
GENBANK
KC522414, KC522415, KC522416, KC522417, KC522418, KC522419, KC522420, KC522421