The occurrence of fetal microchimeric cells in endometrial tissues is a very common phenomenon in benign uterine disorders, and the lower prevalence of fetal microchimerism is associated with better uterine cancer prognoses

. 2014 Jan ; 33 (1) : 40-8. [epub] 20131127

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24283364

This is the first study carried out to describe the role of fetal microchimerism (FM) in the pathogenesis of uterine cancer. The prevalence and concentration of male fetal microchimeric cells (FMCs) were examined in endometrial tissues in relation to subtypes of uterine cancer, and the histological grade and stage of the tumor. FM occurrence was analyzed in relation to risk factors, including hypertension, obesity, type 2 diabetes, dyslipidemia, age at cancer diagnosis, and patient pregnancy history. The prevalence and concentration of FMCs were examined in endometrial tissues using real-time polymerase chain reaction, SRY and β-globin sequences as markers for male fetal FMCs and total DNA. The studied group involved 47 type 1 endometrial cancers, 28 type 2 endometrial cancers, and 41 benign uterine diseases. While the prevalence of FM was decreased only in type 1 endometrial cancer, compared with benign uterine disorders (38.3% vs.70.7%; odds ratio [OR]=0.257, 95% confidence interval [CI]: 0.105 to 0.628, p=0.003), FMC concentrations did not differ within examined groups. The lower FM prevalence was detected in low-grade (grade 1 and grade 2) endometrioid cancer (38.3% vs. 70.7%, OR=0.256, 95% CI: 0.105 to 0.627, p=0.003) and in FIGO 1 tumors (40.7% vs. 70.7%, OR=0.285, 95% CI: 0.120 to 0.675, p=0.004). No correlation between FM prevalence or FMC concentrations and risk factors was demonstrated. A lower prevalence of male FM seemed to be associated with better prognoses in uterine cancer based on tumor subtype, histological grade, and stage of the tumor.

Zobrazit více v PubMed

Akhmedkhanov A., Zeleniuch-Jacquotte A., and Toniolo P. (2006). Role of exogenous and endogenous hormones in endometrial cancer. Ann N Y Acad Sci 943, 296–315 PubMed

Alektiar K.M., McKee A., Lin O., Venkatraman E., Zelefsky M.J., McKee B., Hoskins W.J., and Barakat R.R. (2002). Is there a difference in outcome between stage I-II endometrial cancer of papillary serous/clear cell and endometrioid FIGO grade 3 cancer? Int J Radiat Oncol Biol Phys 54, 79–85 PubMed

Alvarez T., Miller E., Duska L., and Oliva E. (2012). Molecular profile of grade 3 endometrioid endometrial carcinoma: Is it a type I or type II endometrial cancer? Am J Surg Pathol 36, 753–761 PubMed

Amant F., Moerman P., Neven P., Timmerman D., Van Limbergen E., and Vergote I. (2005). Endometrial cancer. Lancet 366, 491–505 PubMed

Artlett C.M. (2005). Pathophysiology of fetal microchimeric cells. Clin Chim Acta 360, 1–8 PubMed

Bakkum-Gamez J.N., Gonzalez-Bosquet J., Laack N.N., Mariani A., and Dowdy S.C. (2008). Current issues in the management of endometrial cancer. Mayo Clin Proc 83, 97–112 PubMed

Banno K., Kisu I., Yanokura M., Masuda K., Kobayashi Y., Ueki A., Tsuji K., Yamagami W., Nomura H., Susumu N., and Aoki D. (2012). Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics. Biochem Res Int 2012, 738274 PubMed PMC

Bayes-Genis A., Bellosillo B., de la Calle O., Salido M., Roura S., Ristol F.S., Soler C., Martinez M., Espinet B., Serrano S., Bayes de Luna A., and Cinca J. (2005). Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J Heart Lung Transplant 24, 2179–2183 PubMed

Bianchi D.W., Zickwolf G.K., Weil G.J., Sylvester S., and DeMaria M.A. (1996). Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93, 705–708 PubMed PMC

Bloch E.M., Jackman R.P., Lee T.H., and Busch M.P. (2013). Transfusion-associated microchimerism: the hybrid within. Transfus Med Rev 1, 10–20 PubMed PMC

Buemi M., Allegra A., D'Anna R., Coppolino G., Crascì E, Giordano D., Loddo S., Cucinotta M., Musolino C., and Teti D. (2007). Concentration of circulating endothelial progenitor cells (EPC) in normal pregnancy and in pregnant women with diabetes and hypertension. Am J Obstet Gynecol 196, 68.e1–e6 PubMed

Campagnoli C., Fisk N., Overton T., Bennett P., Watts T., and Roberts I. (2000). Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood 95, 1967–1972 PubMed

Campagnoli C., Roberts I.A., Kumar S., Bennett P.R., Bellantuono I., and Fisk N.M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 2396–2402 PubMed

Cha D., Khosrotehrani K., Kim Y., Stroh H., Bianchi D.W., and Johnson K.L. (2003). Cervical cancer and microchimeris. Obstet Gynecol 102, 774–781 PubMed

Chan T.F., Wu C.H., Changchien C.C., and Yang C.Y. (2011). Mortality from breast, endometrial and ovarian cancers among grand multiparous women in Taiwan. Aust N Z J Obstet Gynaecol 51, 548–552 PubMed

Chen Y.L., Wang K.L., Chen M.Y., Yu M.H., Wu C.H., Ke Y.M., Chen Y.J., Chang Y.Y., Hsu K.F., and Yen M.S. (2013). Risk factor analysis of coexisting endometrial carcinoma in patients with endometrial hyperplasia: a retrospective observational study of Taiwanese Gynecologic Oncology Group. J Gynecol Oncol 24, 14–20 PubMed PMC

Clayton E.M., Jr, Feldhaus W.D., and Whitacre F.E. (1964). Fetal erythrocytes in the maternal circulation of pregnant women. Obstet Gynecol 23, 915–919 PubMed

Cramer D.W. (2012). The epidemiology of endometrial and ovarian cancer. Hematol Oncol Clin North Am 26, 1–12 PubMed PMC

de Bellefon L.M., Heiman P., Kanaan S.B., Azzouz D.F., Rak J.M., Martin M., Roudier J., Roufosse F., and Lambert N.C. (2010). Cells from a vanished twin as a source of microchimerism 40 years later. Chimerism 2, 56–60 PubMed PMC

Dhimolea E., Denes V., Lakk M., Al-Bazzaz S., Aziz-Zaman S., Pilichowska M., and Geck P. (2013). High male chimerism in the female breast shows quantitative links with cancer. Int J Cancer 133, 835–842 PubMed

Dubernard G., Aractingi S., Oster M., Rouzier R., Mathieu M.C., Uzan S., and Khosrotehrani K. (2008). Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res 10:R14. PubMed PMC

Edlinger M., Concin N., Concin H., Nagel G., Ulmer H., and Göbel G. (2013). Lifestyle-related biomarkers and endometrial cancer survival: elevated gemma-glutamyltransferase as an important risk factor. Cancer Epidemiol 37, 156–161 PubMed

Fleta Asin B., Gonzalvo Liarte M.C., and Cia Gomez P. (2006). Chimerism: origin and medical implications. Rev Clin Esp 206, 340–342 PubMed

Friberg E., Orsini N., Mantzoros C.S., and Wolk A. (2007). Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia 50, 1365–1374 PubMed

Gadi V.K., and Nelson J.L. (2007). Fetal microchimerism in women with breast cancer. Cancer Res 67, 9035–9038 PubMed

Gadi V.K., Malone K.E., Guthrie K.A., Porter P.L., and Nelson J.L. (2008). Case-control study of fetal microchimerism and breast cancer. PLoS One 3, e1706 PubMed PMC

Gadi V.K. (2009). Fetal microchimerism and cancer. Cancer Lett 276, 8–13 PubMed

Gadi V.K. (2010). Fetal microchimerism in breast from women with and without breast cancer. Breast Cancer Res Treat 121, 241–244 PubMed

Gilmore G.L., Haq B., Shadduck R.K., Jasthy S.L., and Lister J. (2008). Fetal-maternal microchimerism in normal parous females and parous female cancer patients. Exp Hematol 36, 1073–1077 PubMed

Grossman E., Messerli F.H., Boyko V., and Goldbourt U. (2002). Is there an association between hypertension and cancer mortality? Am J Med 112, 479–486 PubMed

Guetta E., Gordon D., Simchen M.J., Goldman B., and Barkai G. (2003). Hematopoietic progenitor cells as targets for non-invasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol Dis 30, 13–21 PubMed

Hromadnikova I., Benesova M., Zejskova L., Stehnova J., Doucha J., Sedlacek P., Dlouha K., and Krofta L. (2009). The effect of DYS-14 copy number variations on extracellular fetal DNA quantification in maternal circulation. DNA Cell Biol 28, 351–358 PubMed

Hromadnikova I., Zlacka D., Hien Nguyen T.T., Sedlackova L., Zejskova L., and Sosna A. (2008). Fetal cells of mesenchymal origin in cultures derived from synovial tissue and skin of patients with rheumatoid arthritis. Joint Bone Spine 75, 563–566 PubMed

Kaaks R., Lukanova A., and Kurzer M.S. (2002). Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev 11, 1531–1543 PubMed

Kamper-Jørgensen M., Biggar R.J., Tjønneland A., Hjalgrim H., Kroman N., Rostgaard K., Stamper C.L., Olsen A., Andersen A-MN, and Gadi V.K. (2012). Opposite effects of microchimerism on breast and colon cancer. Eur J Cancer 48, 2227–2235 PubMed

Khan K.N., Kitajima M., Hiraki K., Fujishita A., Sekine I., Ishimaru T., and Masuzaki H. (2010). Changes in tissue inflammation, angiogenesis and apoptosis in endometriosis, adenomyosis and uterine myoma after GnRH agonist therapy. Hum Reprod 25, 642–653 PubMed

Khosrotehrani K., and Bianchi D.W. (2005). Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 118, 1559–1563 PubMed

Kurman R.J., Ellenson L.H., and Ronnett B.M. (2011). Blaustein's Pathology of the Female Genital Tract, 6th ed. (Springer; New York: ), pp. 460–476

Lapaire O., Hosli I., Zanetti-Daellenbach R., Huang D., Jaeggi C., Gatfield-Mergenthaler S., Hahn S., and Holzgreve W. (2007). Impact of fetal-maternal microchimerism on women's health—a review. J Matern Fetal Neonatal Med 20, 1–5 PubMed

Lapierre V., Aupérin A., Robinet E., Ferrand C., Oubouzar N., Tramalloni D., Saas P., Debaene B., Lasser P., and Tiberghien P. (2007). Immune modulation and microchimerism after unmodified versus leukoreduced allogeneic red blood cell transfusion in cancer patients: results of a randomized study. Transfusion 47, 1691–1699 PubMed

Lee E.S.M., Bou-Gharios G., Seppanen E., Khosrotehrani K., and Fisk N.M. (2010). Fetal stem cell microchimerism: natural-born healers or killers? Mol Hum Reprod 16, 869–878 PubMed

Lucenteforte E., Bosetti C., Talamini R., Montella M., Zucchetto A., Pelucchi C., Franceschi S., Negri E., Levi F., and La Vecchia C. (2007). Diabetes and endometrial cancer: effect modification by body weight, physical activity and hypertension. Br J Cancer 97, 995–998 PubMed PMC

Luppi P., Powers R.W., Verma V., Edmunds L., Plymire D., and Hubel C.A. (2010). Maternal circulating CD34+ VEGFR-2+ and CD133+ VEGFR-2+ progenitor cells increase during normal pregnancy but are reduced in women with preeclampsia. Reprod Sci 17, 643–652 PubMed PMC

Milne F.H., Judge D.S., Preen D.B., and Weinstein P. (2011). Early life environment, life history and risk of endometrial cancer. Med Hypotheses 77, 626–632 PubMed

Miura S., Khan K.N., Kitajima M., Hiraki M., Moriyama S., Masuzaki H., Samejima T., Fujishita A., and Ishimaru T. (2006). Differential infiltration of macrophages and prostaglandin production by different uterine leiomyomas. Hum Reprod 21, 2545–2554 PubMed

Mueller U.W., Hawes C.S., Wright A.E., Petropoulos A., DeBoni E., Firgaira F.A., Morley A.A., Turner D.R., and Jones W.R. (1990). Isolation of fetal trophoblast cells from peripheral blood of pregnant women. Lancet 336, 197–200 PubMed

Nassar D., Droitcourt C., Mathieu-d'Argent E., Kim M.J., Khosrotehrani K., and Aractingi S. (2012). Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. FASEB J 26, 149–157 PubMed

Nguyen Huu S., Dubernard G., Aractingi S., and Khosrotehrani K. (2006). Feto-maternal cell trafficking: a transfer of pregnancy associated progenitor cells. Stem Cell Rev 2, 111–116 PubMed

Nguyen Huu S., Oster M., Avril M.F., Boitier F., Mortier L., Richard M.A., Kerob D., Maubec E., Souteyrand P., Moguelet P., Khosrotehrani K., and Aractingi S. (2009). Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Pathol 174, 630–637 PubMed PMC

O'Donoghue K., and Chan J. (2006). Human fetal mesenchymal stem cells. Curr Stem Cell Res Ther 1, 371–386 PubMed

O'Donoghue K., Choolani M., Chan J., de la Fuente J., Kumar S., Campagnoli C., Bennett P.R., Roberts I.A., and Fisk N.M. (2003). Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 9, 497–502 PubMed

Olson S.H., Chen C., De Vivo I., Doherty J.A., Hartmuller V., Horn-Ross P.L., Lacey J.V., Lynch S.M., Sansbury L., and Setiawan V.W. (2009). Maximizing resources to study an uncommon cancer: E2C2-Epidemiology of Endometrial Cancer Consortium. Cancer Causes Control 20:491–496 PubMed PMC

Pallarés J., Velasco A., Eritja N., Santacana M., Dolcet X., Cuatrecasas M., Palomar-Asenjo V., Catasús L., Prat J., and Matias-Guiu X. (2008). Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma. Mod Pathol 21, 691–699 PubMed

Parant O., Dubernard G., Challier J.C., Oster M., Uzan S., Aractingi S., and Khosrotehrani K. (2009). CD34+ cells in maternal placental blood are mainly fetal in origin and express endothelial markers. Lab Invest 89, 915–923 PubMed

Purdie D.M., and Green A.C. (2001). Epidemiology of endometrial cancer. Best Practise Res Clin Obstet Gynaecol 15, 341–354 PubMed

Rapp K., Schroeder J., Klenk J., Stoehr S., Ulmer H., Concin H., Diem G., Oberaigner W., and Weiland S.K. (2005). Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer 93, 1062–1067 PubMed PMC

Savvidou M.D., Xiao Q., Kaihura C., Anderson J.M., and Nicolaides K.H. (2008). Maternal circulating endothelial progenitor cells in normal singleton and twin pregnancy. Am J Obstet Gynecol 198, 414.e1–e5 PubMed

Sawaya H.H.B., Jimenez S.A., and Artlett C.M. (2004). Quantification of fetal microchimeric cells in clinically affected and unaffected skin of patients with systemic sclerosis. Rheumatology 43, 965–968 PubMed

Schmandt R.E., Iglesias D.A., Co N.N., and Lu K.H. (2011). Understanding obesity and endometrial cancer risk: opportunities for preventation. Am J Obstet Gynecol 205, 518–525 PubMed PMC

Schottenfeld D.J. (1995). Epidemiology of endometrial neoplasia. Cell Biochem Suppl 23, 151–159 PubMed

Seth D., Garmo H., Wigertz A., Holmberg L., Hammar N., Jungner I., Lambe M., Walldius G., and van Hemelrijck M. (2012). Lipid profiles and the risk of endometrial cancer in the Swedish AMORIS study. Int J Mol Epidemiol Genet 3, 122–133 PubMed PMC

Sherman M.E. (2000). Theories of endometrial carcinogenesis: a multidisciplinary approach. Med Pathol 13, 295–308 PubMed

Soslow R.A., Bissonnette J.P., Wilton A., Ferguson S.E., Alektiar K.M., Duska L.R., and Oliva E. (2007). Clinicopathologic analysis of 187 high-grade endometrial carcinomas of different histologic subtypes: similar outcomes belie distinctive biologic differences. Am J Surg Pathol 31, 979–987 PubMed

Trentham-Dietz A., Nichols H., Hampton J.M., and Newcomb P. (2006). Weight change and risk of endometrial cancer. Int J Epidemiol 35, 151–158 PubMed

van der Weyden L., and Adams D.J. (2007). The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta 1776, 58–85 PubMed PMC

Vervoordeldonk S.F., Doumaid K., Remmerswaal E.B., ten Berge I.J., Wilmink J.M., de Waal L.P., and Boog C.J. (1998). Long-term detection of microchimaerism in peripheral blood after pretransplantation blood transfusion. Br J Haematol 4, 1004–1009 PubMed

von Gruenigen V.E., Waggoner S.E., Frasure H.E., Kavanagh M.B., Janata J.W., Rose P.G., Courneya K.S., and Lerner E. (2011). Lifestyle challenges in endometrial cancer survivorship. Obstet Gynecol 117, 93–100 PubMed

Walknowska J., Conte F.A., and Grumbach M.M. (1969). Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet 1, 1119–1122 PubMed

Wernli K.J., Ray R.M., Gao D.L., De Roos A.J., Checkoway H., and Thomas D.B. (2006). Menstrual and reproductive factors in relation to risk of endometrial cancer in Chinese women. Cancer Causes Control 17, 949–955 PubMed

Yan Z., Lambert N.C., Guthrie K.A., Porter A.J., Loubiere L.S., Madeleine M.M., Stevens A.M., Hermes H.M., and Nelson J.L. (2005). Male microchimerism in women without sons: quantitative assessment and correlation with pregnancy history. Am J Med 118, 899–906 PubMed

Zagouri F., Dimopoulos A.M., Fotiou S., Kouloulias V., and Papadimitriou C.A. (2009). Treatment of early uterine sarcomas: disentangling adjuvant modalities. World J Surg Oncol 7, 38. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...