The occurrence of fetal microchimeric cells in endometrial tissues is a very common phenomenon in benign uterine disorders, and the lower prevalence of fetal microchimerism is associated with better uterine cancer prognoses
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24283364
PubMed Central
PMC3880914
DOI
10.1089/dna.2013.2125
Knihovny.cz E-zdroje
- MeSH
- časná diagnóza MeSH
- chimérismus statistika a číselné údaje MeSH
- dospělí MeSH
- endometrium cytologie patologie MeSH
- fetální kmenové buňky MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- maternofetální výměna látek genetika MeSH
- nádory dělohy diagnóza genetika patologie MeSH
- nemoci dělohy diagnóza patologie MeSH
- prognóza MeSH
- rizikové faktory MeSH
- senioři MeSH
- staging nádorů MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This is the first study carried out to describe the role of fetal microchimerism (FM) in the pathogenesis of uterine cancer. The prevalence and concentration of male fetal microchimeric cells (FMCs) were examined in endometrial tissues in relation to subtypes of uterine cancer, and the histological grade and stage of the tumor. FM occurrence was analyzed in relation to risk factors, including hypertension, obesity, type 2 diabetes, dyslipidemia, age at cancer diagnosis, and patient pregnancy history. The prevalence and concentration of FMCs were examined in endometrial tissues using real-time polymerase chain reaction, SRY and β-globin sequences as markers for male fetal FMCs and total DNA. The studied group involved 47 type 1 endometrial cancers, 28 type 2 endometrial cancers, and 41 benign uterine diseases. While the prevalence of FM was decreased only in type 1 endometrial cancer, compared with benign uterine disorders (38.3% vs.70.7%; odds ratio [OR]=0.257, 95% confidence interval [CI]: 0.105 to 0.628, p=0.003), FMC concentrations did not differ within examined groups. The lower FM prevalence was detected in low-grade (grade 1 and grade 2) endometrioid cancer (38.3% vs. 70.7%, OR=0.256, 95% CI: 0.105 to 0.627, p=0.003) and in FIGO 1 tumors (40.7% vs. 70.7%, OR=0.285, 95% CI: 0.120 to 0.675, p=0.004). No correlation between FM prevalence or FMC concentrations and risk factors was demonstrated. A lower prevalence of male FM seemed to be associated with better prognoses in uterine cancer based on tumor subtype, histological grade, and stage of the tumor.
Zobrazit více v PubMed
Akhmedkhanov A., Zeleniuch-Jacquotte A., and Toniolo P. (2006). Role of exogenous and endogenous hormones in endometrial cancer. Ann N Y Acad Sci 943, 296–315 PubMed
Alektiar K.M., McKee A., Lin O., Venkatraman E., Zelefsky M.J., McKee B., Hoskins W.J., and Barakat R.R. (2002). Is there a difference in outcome between stage I-II endometrial cancer of papillary serous/clear cell and endometrioid FIGO grade 3 cancer? Int J Radiat Oncol Biol Phys 54, 79–85 PubMed
Alvarez T., Miller E., Duska L., and Oliva E. (2012). Molecular profile of grade 3 endometrioid endometrial carcinoma: Is it a type I or type II endometrial cancer? Am J Surg Pathol 36, 753–761 PubMed
Amant F., Moerman P., Neven P., Timmerman D., Van Limbergen E., and Vergote I. (2005). Endometrial cancer. Lancet 366, 491–505 PubMed
Artlett C.M. (2005). Pathophysiology of fetal microchimeric cells. Clin Chim Acta 360, 1–8 PubMed
Bakkum-Gamez J.N., Gonzalez-Bosquet J., Laack N.N., Mariani A., and Dowdy S.C. (2008). Current issues in the management of endometrial cancer. Mayo Clin Proc 83, 97–112 PubMed
Banno K., Kisu I., Yanokura M., Masuda K., Kobayashi Y., Ueki A., Tsuji K., Yamagami W., Nomura H., Susumu N., and Aoki D. (2012). Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics. Biochem Res Int 2012, 738274 PubMed PMC
Bayes-Genis A., Bellosillo B., de la Calle O., Salido M., Roura S., Ristol F.S., Soler C., Martinez M., Espinet B., Serrano S., Bayes de Luna A., and Cinca J. (2005). Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J Heart Lung Transplant 24, 2179–2183 PubMed
Bianchi D.W., Zickwolf G.K., Weil G.J., Sylvester S., and DeMaria M.A. (1996). Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93, 705–708 PubMed PMC
Bloch E.M., Jackman R.P., Lee T.H., and Busch M.P. (2013). Transfusion-associated microchimerism: the hybrid within. Transfus Med Rev 1, 10–20 PubMed PMC
Buemi M., Allegra A., D'Anna R., Coppolino G., Crascì E, Giordano D., Loddo S., Cucinotta M., Musolino C., and Teti D. (2007). Concentration of circulating endothelial progenitor cells (EPC) in normal pregnancy and in pregnant women with diabetes and hypertension. Am J Obstet Gynecol 196, 68.e1–e6 PubMed
Campagnoli C., Fisk N., Overton T., Bennett P., Watts T., and Roberts I. (2000). Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood 95, 1967–1972 PubMed
Campagnoli C., Roberts I.A., Kumar S., Bennett P.R., Bellantuono I., and Fisk N.M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 2396–2402 PubMed
Cha D., Khosrotehrani K., Kim Y., Stroh H., Bianchi D.W., and Johnson K.L. (2003). Cervical cancer and microchimeris. Obstet Gynecol 102, 774–781 PubMed
Chan T.F., Wu C.H., Changchien C.C., and Yang C.Y. (2011). Mortality from breast, endometrial and ovarian cancers among grand multiparous women in Taiwan. Aust N Z J Obstet Gynaecol 51, 548–552 PubMed
Chen Y.L., Wang K.L., Chen M.Y., Yu M.H., Wu C.H., Ke Y.M., Chen Y.J., Chang Y.Y., Hsu K.F., and Yen M.S. (2013). Risk factor analysis of coexisting endometrial carcinoma in patients with endometrial hyperplasia: a retrospective observational study of Taiwanese Gynecologic Oncology Group. J Gynecol Oncol 24, 14–20 PubMed PMC
Clayton E.M., Jr, Feldhaus W.D., and Whitacre F.E. (1964). Fetal erythrocytes in the maternal circulation of pregnant women. Obstet Gynecol 23, 915–919 PubMed
Cramer D.W. (2012). The epidemiology of endometrial and ovarian cancer. Hematol Oncol Clin North Am 26, 1–12 PubMed PMC
de Bellefon L.M., Heiman P., Kanaan S.B., Azzouz D.F., Rak J.M., Martin M., Roudier J., Roufosse F., and Lambert N.C. (2010). Cells from a vanished twin as a source of microchimerism 40 years later. Chimerism 2, 56–60 PubMed PMC
Dhimolea E., Denes V., Lakk M., Al-Bazzaz S., Aziz-Zaman S., Pilichowska M., and Geck P. (2013). High male chimerism in the female breast shows quantitative links with cancer. Int J Cancer 133, 835–842 PubMed
Dubernard G., Aractingi S., Oster M., Rouzier R., Mathieu M.C., Uzan S., and Khosrotehrani K. (2008). Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res 10:R14. PubMed PMC
Edlinger M., Concin N., Concin H., Nagel G., Ulmer H., and Göbel G. (2013). Lifestyle-related biomarkers and endometrial cancer survival: elevated gemma-glutamyltransferase as an important risk factor. Cancer Epidemiol 37, 156–161 PubMed
Fleta Asin B., Gonzalvo Liarte M.C., and Cia Gomez P. (2006). Chimerism: origin and medical implications. Rev Clin Esp 206, 340–342 PubMed
Friberg E., Orsini N., Mantzoros C.S., and Wolk A. (2007). Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia 50, 1365–1374 PubMed
Gadi V.K., and Nelson J.L. (2007). Fetal microchimerism in women with breast cancer. Cancer Res 67, 9035–9038 PubMed
Gadi V.K., Malone K.E., Guthrie K.A., Porter P.L., and Nelson J.L. (2008). Case-control study of fetal microchimerism and breast cancer. PLoS One 3, e1706 PubMed PMC
Gadi V.K. (2009). Fetal microchimerism and cancer. Cancer Lett 276, 8–13 PubMed
Gadi V.K. (2010). Fetal microchimerism in breast from women with and without breast cancer. Breast Cancer Res Treat 121, 241–244 PubMed
Gilmore G.L., Haq B., Shadduck R.K., Jasthy S.L., and Lister J. (2008). Fetal-maternal microchimerism in normal parous females and parous female cancer patients. Exp Hematol 36, 1073–1077 PubMed
Grossman E., Messerli F.H., Boyko V., and Goldbourt U. (2002). Is there an association between hypertension and cancer mortality? Am J Med 112, 479–486 PubMed
Guetta E., Gordon D., Simchen M.J., Goldman B., and Barkai G. (2003). Hematopoietic progenitor cells as targets for non-invasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol Dis 30, 13–21 PubMed
Hromadnikova I., Benesova M., Zejskova L., Stehnova J., Doucha J., Sedlacek P., Dlouha K., and Krofta L. (2009). The effect of DYS-14 copy number variations on extracellular fetal DNA quantification in maternal circulation. DNA Cell Biol 28, 351–358 PubMed
Hromadnikova I., Zlacka D., Hien Nguyen T.T., Sedlackova L., Zejskova L., and Sosna A. (2008). Fetal cells of mesenchymal origin in cultures derived from synovial tissue and skin of patients with rheumatoid arthritis. Joint Bone Spine 75, 563–566 PubMed
Kaaks R., Lukanova A., and Kurzer M.S. (2002). Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev 11, 1531–1543 PubMed
Kamper-Jørgensen M., Biggar R.J., Tjønneland A., Hjalgrim H., Kroman N., Rostgaard K., Stamper C.L., Olsen A., Andersen A-MN, and Gadi V.K. (2012). Opposite effects of microchimerism on breast and colon cancer. Eur J Cancer 48, 2227–2235 PubMed
Khan K.N., Kitajima M., Hiraki K., Fujishita A., Sekine I., Ishimaru T., and Masuzaki H. (2010). Changes in tissue inflammation, angiogenesis and apoptosis in endometriosis, adenomyosis and uterine myoma after GnRH agonist therapy. Hum Reprod 25, 642–653 PubMed
Khosrotehrani K., and Bianchi D.W. (2005). Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 118, 1559–1563 PubMed
Kurman R.J., Ellenson L.H., and Ronnett B.M. (2011). Blaustein's Pathology of the Female Genital Tract, 6th ed. (Springer; New York: ), pp. 460–476
Lapaire O., Hosli I., Zanetti-Daellenbach R., Huang D., Jaeggi C., Gatfield-Mergenthaler S., Hahn S., and Holzgreve W. (2007). Impact of fetal-maternal microchimerism on women's health—a review. J Matern Fetal Neonatal Med 20, 1–5 PubMed
Lapierre V., Aupérin A., Robinet E., Ferrand C., Oubouzar N., Tramalloni D., Saas P., Debaene B., Lasser P., and Tiberghien P. (2007). Immune modulation and microchimerism after unmodified versus leukoreduced allogeneic red blood cell transfusion in cancer patients: results of a randomized study. Transfusion 47, 1691–1699 PubMed
Lee E.S.M., Bou-Gharios G., Seppanen E., Khosrotehrani K., and Fisk N.M. (2010). Fetal stem cell microchimerism: natural-born healers or killers? Mol Hum Reprod 16, 869–878 PubMed
Lucenteforte E., Bosetti C., Talamini R., Montella M., Zucchetto A., Pelucchi C., Franceschi S., Negri E., Levi F., and La Vecchia C. (2007). Diabetes and endometrial cancer: effect modification by body weight, physical activity and hypertension. Br J Cancer 97, 995–998 PubMed PMC
Luppi P., Powers R.W., Verma V., Edmunds L., Plymire D., and Hubel C.A. (2010). Maternal circulating CD34+ VEGFR-2+ and CD133+ VEGFR-2+ progenitor cells increase during normal pregnancy but are reduced in women with preeclampsia. Reprod Sci 17, 643–652 PubMed PMC
Milne F.H., Judge D.S., Preen D.B., and Weinstein P. (2011). Early life environment, life history and risk of endometrial cancer. Med Hypotheses 77, 626–632 PubMed
Miura S., Khan K.N., Kitajima M., Hiraki M., Moriyama S., Masuzaki H., Samejima T., Fujishita A., and Ishimaru T. (2006). Differential infiltration of macrophages and prostaglandin production by different uterine leiomyomas. Hum Reprod 21, 2545–2554 PubMed
Mueller U.W., Hawes C.S., Wright A.E., Petropoulos A., DeBoni E., Firgaira F.A., Morley A.A., Turner D.R., and Jones W.R. (1990). Isolation of fetal trophoblast cells from peripheral blood of pregnant women. Lancet 336, 197–200 PubMed
Nassar D., Droitcourt C., Mathieu-d'Argent E., Kim M.J., Khosrotehrani K., and Aractingi S. (2012). Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. FASEB J 26, 149–157 PubMed
Nguyen Huu S., Dubernard G., Aractingi S., and Khosrotehrani K. (2006). Feto-maternal cell trafficking: a transfer of pregnancy associated progenitor cells. Stem Cell Rev 2, 111–116 PubMed
Nguyen Huu S., Oster M., Avril M.F., Boitier F., Mortier L., Richard M.A., Kerob D., Maubec E., Souteyrand P., Moguelet P., Khosrotehrani K., and Aractingi S. (2009). Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Pathol 174, 630–637 PubMed PMC
O'Donoghue K., and Chan J. (2006). Human fetal mesenchymal stem cells. Curr Stem Cell Res Ther 1, 371–386 PubMed
O'Donoghue K., Choolani M., Chan J., de la Fuente J., Kumar S., Campagnoli C., Bennett P.R., Roberts I.A., and Fisk N.M. (2003). Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 9, 497–502 PubMed
Olson S.H., Chen C., De Vivo I., Doherty J.A., Hartmuller V., Horn-Ross P.L., Lacey J.V., Lynch S.M., Sansbury L., and Setiawan V.W. (2009). Maximizing resources to study an uncommon cancer: E2C2-Epidemiology of Endometrial Cancer Consortium. Cancer Causes Control 20:491–496 PubMed PMC
Pallarés J., Velasco A., Eritja N., Santacana M., Dolcet X., Cuatrecasas M., Palomar-Asenjo V., Catasús L., Prat J., and Matias-Guiu X. (2008). Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma. Mod Pathol 21, 691–699 PubMed
Parant O., Dubernard G., Challier J.C., Oster M., Uzan S., Aractingi S., and Khosrotehrani K. (2009). CD34+ cells in maternal placental blood are mainly fetal in origin and express endothelial markers. Lab Invest 89, 915–923 PubMed
Purdie D.M., and Green A.C. (2001). Epidemiology of endometrial cancer. Best Practise Res Clin Obstet Gynaecol 15, 341–354 PubMed
Rapp K., Schroeder J., Klenk J., Stoehr S., Ulmer H., Concin H., Diem G., Oberaigner W., and Weiland S.K. (2005). Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer 93, 1062–1067 PubMed PMC
Savvidou M.D., Xiao Q., Kaihura C., Anderson J.M., and Nicolaides K.H. (2008). Maternal circulating endothelial progenitor cells in normal singleton and twin pregnancy. Am J Obstet Gynecol 198, 414.e1–e5 PubMed
Sawaya H.H.B., Jimenez S.A., and Artlett C.M. (2004). Quantification of fetal microchimeric cells in clinically affected and unaffected skin of patients with systemic sclerosis. Rheumatology 43, 965–968 PubMed
Schmandt R.E., Iglesias D.A., Co N.N., and Lu K.H. (2011). Understanding obesity and endometrial cancer risk: opportunities for preventation. Am J Obstet Gynecol 205, 518–525 PubMed PMC
Schottenfeld D.J. (1995). Epidemiology of endometrial neoplasia. Cell Biochem Suppl 23, 151–159 PubMed
Seth D., Garmo H., Wigertz A., Holmberg L., Hammar N., Jungner I., Lambe M., Walldius G., and van Hemelrijck M. (2012). Lipid profiles and the risk of endometrial cancer in the Swedish AMORIS study. Int J Mol Epidemiol Genet 3, 122–133 PubMed PMC
Sherman M.E. (2000). Theories of endometrial carcinogenesis: a multidisciplinary approach. Med Pathol 13, 295–308 PubMed
Soslow R.A., Bissonnette J.P., Wilton A., Ferguson S.E., Alektiar K.M., Duska L.R., and Oliva E. (2007). Clinicopathologic analysis of 187 high-grade endometrial carcinomas of different histologic subtypes: similar outcomes belie distinctive biologic differences. Am J Surg Pathol 31, 979–987 PubMed
Trentham-Dietz A., Nichols H., Hampton J.M., and Newcomb P. (2006). Weight change and risk of endometrial cancer. Int J Epidemiol 35, 151–158 PubMed
van der Weyden L., and Adams D.J. (2007). The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta 1776, 58–85 PubMed PMC
Vervoordeldonk S.F., Doumaid K., Remmerswaal E.B., ten Berge I.J., Wilmink J.M., de Waal L.P., and Boog C.J. (1998). Long-term detection of microchimaerism in peripheral blood after pretransplantation blood transfusion. Br J Haematol 4, 1004–1009 PubMed
von Gruenigen V.E., Waggoner S.E., Frasure H.E., Kavanagh M.B., Janata J.W., Rose P.G., Courneya K.S., and Lerner E. (2011). Lifestyle challenges in endometrial cancer survivorship. Obstet Gynecol 117, 93–100 PubMed
Walknowska J., Conte F.A., and Grumbach M.M. (1969). Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet 1, 1119–1122 PubMed
Wernli K.J., Ray R.M., Gao D.L., De Roos A.J., Checkoway H., and Thomas D.B. (2006). Menstrual and reproductive factors in relation to risk of endometrial cancer in Chinese women. Cancer Causes Control 17, 949–955 PubMed
Yan Z., Lambert N.C., Guthrie K.A., Porter A.J., Loubiere L.S., Madeleine M.M., Stevens A.M., Hermes H.M., and Nelson J.L. (2005). Male microchimerism in women without sons: quantitative assessment and correlation with pregnancy history. Am J Med 118, 899–906 PubMed
Zagouri F., Dimopoulos A.M., Fotiou S., Kouloulias V., and Papadimitriou C.A. (2009). Treatment of early uterine sarcomas: disentangling adjuvant modalities. World J Surg Oncol 7, 38. PubMed PMC