Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Phototrophic Processes MeSH
- Phylogeny MeSH
- Molecular Sequence Data MeSH
- Operon * MeSH
- Gene Transfer, Horizontal * MeSH
- Roseobacter classification genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
The Roseobacter clade represents one of the most important bacterial groups in marine environments. While some of its members are heterotrophs, many Roseobacter clade members contain bacterial photosynthetic reaction centers. We investigated the phylogeny of pufL and pufM genes encoding the L and M subunits of reaction centers using available genomic data and our own cultured species. Interestingly, phylogeny of pufL and pufM genes largely deviated from 16S rRNA-based phylogeny. The sequences split into two clearly distinct clades. While most of the studied species contained pufL and pufM sequences related to those found in Roseobacter litoralis, some of the marine species contained sequences related to the freshwater Rhodobacter species. In addition, genomic data documents that Roseobacter-type centers contain cytochrome c subunits (pufC gene product), whereas Rhodobacter-type centers incorporate PufX proteins. This indicates that the two forms of the reaction centers are not only distinct phylogenetically, but also structurally. The large deviation of pufL and pufM phylogeny from 16S phylogeny indicates multiple horizontal transfers of the puf operon among members of the order Rhodobacterales.
See more in PubMed
Appl Environ Microbiol. 2007 Jul;73(14):4559-69 PubMed
BMC Bioinformatics. 2005 Dec 12;6:298 PubMed
Appl Environ Microbiol. 2005 Jan;71(1):344-53 PubMed
Appl Environ Microbiol. 2013 Apr;79(8):2596-604 PubMed
Nature. 2002 Feb 7;415(6872):630-3 PubMed
Environ Microbiol. 2005 Dec;7(12):2027-33 PubMed
Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:303-313 PubMed
Gene. 2002 Aug 7;295(2):205-11 PubMed
Syst Biol. 2003 Oct;52(5):696-704 PubMed
J Biol Chem. 1999 Apr 16;274(16):10795-801 PubMed
Int J Syst Evol Microbiol. 2005 Jan;55(Pt 1):105-110 PubMed
J Bacteriol. 1988 Feb;170(2):720-6 PubMed
Lipids. 2005 Jan;40(1):97-108 PubMed
J Bacteriol. 1997 Sep;179(17):5247-58 PubMed
Appl Environ Microbiol. 2003 Sep;69(9):5051-9 PubMed
Biochemistry. 2013 Oct 29;52(43):7575-85 PubMed
Appl Environ Microbiol. 2009 Dec;75(23):7556-9 PubMed
Arch Microbiol. 2008 Jun;189(6):531-9 PubMed
Arch Microbiol. 2003 Nov;180(5):327-38 PubMed
Environ Microbiol. 2005 Dec;7(12):1896-908 PubMed
Arch Microbiol. 2010 Jan;192(1):41-9 PubMed
Bioinformatics. 1998;14(9):817-8 PubMed
Environ Microbiol. 2007 Jun;9(6):1464-75 PubMed
J Biol Chem. 2004 Jan 30;279(5):3620-6 PubMed
Annu Rev Microbiol. 2006;60:255-80 PubMed
Int J Syst Bacteriol. 1999 Apr;49 Pt 2:629-34 PubMed
Int J Syst Evol Microbiol. 2005 May;55(Pt 3):1089-1096 PubMed
Int J Syst Evol Microbiol. 2005 Jan;55(Pt 1):41-47 PubMed
PLoS One. 2011;6(9):e25050 PubMed
Appl Environ Microbiol. 2008 Jul;74(14):4398-404 PubMed
Appl Environ Microbiol. 1979 Jul;38(1):43-5 PubMed
Int J Syst Bacteriol. 1999 Jan;49 Pt 1:137-47 PubMed
Int J Syst Evol Microbiol. 2005 Jul;55(Pt 4):1597-1603 PubMed
Organellar Evolution: A Path from Benefit to Dependence
Clustered Core- and Pan-Genome Content on Rhodobacteraceae Chromosomes
Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae
Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans
Genomic Analysis of the Evolution of Phototrophy among Haloalkaliphilic Rhodobacterales