• This record comes from PubMed

Inhibition of autoimmune Chagas-like heart disease by bone marrow transplantation

. 2014 Dec ; 8 (12) : e3384. [epub] 20141218

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

BACKGROUND: Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS: To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8β+ effector cells that expressed TCRγδ, vβ1 and vβ2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE: Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.

See more in PubMed

Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N (2011) Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 24: 592–630. PubMed PMC

Lee BY, Bacon KM, Bottazzi ME, Hotez PJ (2013) Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 13: 342–348. PubMed PMC

Prata A (2001) Clinical and epidemiological aspects of Chagas disease Lancet Infect Dis. 1: 92–100. PubMed

Dávila DF, Donis JH, Arata de Bellabarba G, Villarroel V, Sanchez F, et al. (2012) Cardiac autonomic control mechanisms in the pathogenesis of chagas' heart disease. Interdiscip Perspect Infect Dis. 2012: 980739 10.1155/2012/980739 PubMed DOI PMC

Dávila DF, Núñez TJ, Odreman R, de Dávila CA (2005) Mechanisms of neurohormonal activation in chronic congestive heart failure: pathophysiology and therapeutic implications. Int J Cardiol 101: 343–346. PubMed

Dávila DF, Donis JH, Torres A, Ferrer JA (2004) A modified and unifying neurogenic hypothesis can explain the natural history of chronic Chagas heart disease. Int J Cardiol 96: 191–195. PubMed

Fernandes MC, Andrews NW (2012) Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence. FEMS Microbiol Rev 36: 734–747. PubMed PMC

Benvenuti LA, Roggério A, Nishiya AS, Campos SV, Fiorelli AI, et al. (2014). Trypanosoma cruzi persistence in the native heart is associated with high-grade myocarditis, but not with Chagas' disease reactivation after heart transplantation. J Heart Lung Transplant. 10.1016/j.healun.2014.01.920 PubMed DOI

Santos-Buch CA, Teixeira AR (1974) The immunology of experimental Chagas' disease. 3. Rejection of allogeneic heart cells in vitro. J Exp Med 140: 38–53. PubMed PMC

Teixeira AR, Gomes C, Nitz N, Sousa AO, Alves RM, et al. (2011) Trypanosoma cruzi in the Chicken Model: Chagas-Like Heart Disease in the Absence of Parasitism. PLoS Negl Trop Dis 5: e1000. PubMed PMC

Burnet FM (1970). Immunological Surveillance. London: Pergamon Press.

Frasca D (2013) AID in aging and autoimmune diseases. Autoimmunity 7: 301–307. PubMed PMC

Goronzy JJ (2013) The janus head of T cell aging - autoimmunity and immunodeficiency. Front Immunol 4: 131 10.3389/fimmu.2013.00131 PubMed DOI PMC

Vadasz Z (2013) Age-related autoimmunity. BMC Med 11: 94 10.1186/1741-7015-11-94 PubMed DOI PMC

Burnet FM (1961) Immunological recognition of self. Science 133: 307–311. PubMed

Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172: 603–66. PubMed

Burnet FM (1972). Auto-immunity and Auto-immune disease. Medical and Technical Publishers Co., Lancaster, UK.

Jacobson DL, Gange SJ, Rose NR, Graham NM (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84: 223–243. PubMed

Cooper GS, Stroehla BC (2003) The epidemiology of autoimmune diseases. Autoimmune Reviews 2: 119–125. PubMed

Bogdanos DP (2013) Infectome: A platform to trace infectious triggers of autoimmunity. Autoimmunity Reviews 12: 726–740. PubMed PMC

Kivity S (2009) Infections and autoimmunity – friends or foes? Trends Immunol 30: 409–414. PubMed

Sfriso P, Ghirardelo A, Botsios C, Torrion M, Zen M, at al (2010) Infections and autoimmunity: the multifaceted relationship. Leukoc Biol 87: 385–395. PubMed

Shoenfeld Y (2013) Everything is Autoimmune Until Proven Otherwise. Clinic Rev Allerg Immunol 45(2): 149–151 10.1007/s12016-013-8385-8 PubMed DOI

Rose NR. Learning from muocarditis: mimicry, chaos and black holes. (2014) F1000 Prime Rep. 6: 25 10.1273/P6-25 PubMed DOI PMC

Fairweather D, Rose NR (2005) Inflammatory heart disease: a role for cytokines. Lupus 14: 646–651. PubMed

Lamkanfi M, Walle LV, Kanneganti TD (2011) Deregulated inflammasome signaling in disease. Immunol Rev 243: 163–173. PubMed PMC

Ram M, Barzilai O, Shapira Y, Anaya JM, Tincani A, et al. (2013) Helicobacter pylori serology in autoimmune diseases - fact or fiction? Clin Chem Lab Med 51: 1075–1082. PubMed

Reddy J (2013) Autoimmunity in viral myocarditis. Curr Opin Rheumatol 25: 502–508. PubMed

Romani L (2008) Parasites and autoimmunity: the case of fungi. Autoimmune Rev 8: 129–133. PubMed

Mattner J (2011) Genetic susceptibility to autoimmune liver disease. World J Hepatol 3: 1–7. PubMed PMC

Bogdanos DP, Smyk DS, Rigopoulou EI, Mytilinaiou MG, et al. (2012) Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun 38: 156–169. PubMed

Bachi ALL, Suguri VM, Ramos LR, Vaisberg M, et al. (2013) Increased production of autoantibodies and specific antibodies in response to influenza virus vaccination in physically active older individuals Results Immunol. 3: 10–16. PubMed PMC

Attanasio R, Brasky KM, Robbins SH, Jayashankar L, Nash RJ, et al. (2001) Age-related autoantibody production in a nonhuman primate model. Clin Exp Immunol 123: 361–365. PubMed PMC

Richaud-Patin Y, Villa AR (1995) Autoantibodies, mortality and ageing. Med Hypotheses 44: 10–15. PubMed

Warraich RS, Dunn MJ, Yacoub MH (1999) Subclass specificity of autoantibodies against myosin in patients with idiopathic dilated cardiomyopathy: pro-inflammatory antibodies in DCM patients. Biochem Biophys Res Commun 259: 255–261. PubMed

Mascaro-Blanco A, Alvarez K, Yu X, Lindenfeld J, Olansky L, et al. (2008) Consequences of unlocking the cardiac myosin molecule in human myocarditis and cardiomyopathies. Autoimmunity 41: 442–453. PubMed PMC

Warraich RS, Noutsias M, Kazak I, Seeberg B, Dunn MJ, et al. (2002) Immunoglobulin G3 cardiac myosin autoantibodies correlate with left ventricular dysfunction in patients with dilated cardiomyopathy: immunoglobulin G3 and clinical correlates. Am Heart J 143: 1076–1084. PubMed

Nussinovitch U, Shoenfeld Y (2013) The clinical and diagnostic significance of anti-Myosin auto antibodies in cardiac disease. Clin Rev Allergy Immunol 44: 98–108 10.1007/s12016-010-8229-8238 PubMed DOI

Myers JM, Fairweather D, Huber SA, Cunningham MW. (2013). Autoimmune myocarditis, valvulitis, and cardiomyopathy. Curr Protoc Immunol 10.1002/0471142735.im1514s101 PubMed DOI PMC

Bonney KM, Taylor JM, Daniels MD, Epting CL, Engman DM (2011) Heat-killed Trypanosoma cruzi induces acute cardiac damage and polyantigenic autoimmunity. PLoS One 6: e14571 10.1371/journal.pone.0014571 PubMed DOI PMC

Abel LC, Rizzo LV, Ianni B, Albuquerque F, Bacal F, et al. (2001) Chronic Chagas' disease cardiomyopathy patients display an increased IFN-gamma response to Trypanosoma cruzi infection. J Autoimmun 17: 99–107. PubMed

Vicco MH, Ferini F, Rodeles L, Cardona P, Bontempi I, et al. (2013) Assessment of cross-reactive host-pathogen antibodies in patients with different stages of chronic Chagas disease. Rev Esp Cardiol (Engl Ed). 66: 791–796. PubMed

Cunha-Neto E, Teixeira PC, Fonseca SG, Bilate AM, Kalil J (2011) Myocardial gene and protein expression profiles after autoimmune injury in Chagas' disease cardiomyopathy. Autoimmun Rev 10: 163–165. PubMed

Leon JS, Daniels MD, Toriello KM, Wang K, Engman DM (2004) A cardiac myosin-specific autoimmune response is induced by immunization with Trypanosoma cruzi proteins. Infet Immun 72: 3410–3417. PubMed PMC

Nunes DF, Guedes PM, Andrade Cde M, Câmara AC, Chiari E, et al. (2013) Troponin T autoantibodies correlate with chronic cardiomyopathy in human Chagas disease. Trop Med Int Health 18: 1180–1192. PubMed

Leon JS, Wang K, Engman DM (2003) Myosin autoimmunity is not essential for cardiac inflammation in acute Chagas' disease. J Immunol 171: 271–4277. PubMed

Ballinas-Vedugo MA, Alejandre-Aguilar R, Aranda-Fraustro A, Reyes PA, Monteon VM (2003) Anti-myosin autoantibodies are more frequent in non-Chagasic cardiomyopathy than in Chagasiccardiomyopathy patients. Int J Cardiol 92: 101–112. PubMed

Bonney KM, Gifford KM, Taylor JM, Chen CI, Engman DM (2013) Cardiac damage induced by immunization with heat-killed Trypanosoma cruzi is not antibody mediated. Parasite Immunol 35: 1–10 10.1111/pim.12008 PubMed DOI

Caforio AL, Mahon NJ, Mckenna WJ (2001) Cardiac autoantibodies to myosin and other heart-specific autoantigens in myocarditis and dilated cardiomyopathy. Autoimmunity 34: 199–204. PubMed

Caforio AL, Iliceto S (2008) Genetically determined myocarditis: clinical presentation and immunological characteristics. Curr Opin Cardiol 23: 219–226. PubMed

Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, et al. (2006) Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 39: 41–54. PubMed

Ribeiro CH, López NC, Ramírez GA, Valck CE, Molina MC, et al. (2009) Trypanosoma cruzi calreticulin: a possible role in Chagas' disease autoimmunity. Mol Immunol 46: 1092–1099. PubMed

Fairweather D, Frisando-Kiss S, Rose NR (2005) Viruses as adjuvants for autoimmunity: evidence from Coxxackievirus-induced myocarditis. Rev Med Virol 15: 17–27. PubMed

Fairweather D. Autoimmune disease: Mechanism. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. New York. doi: 10.1002/9780470015902.a0020193.

Kong YC. Experimental autoimmune thyroiditis in the mouse (2007) Curr Protoc Immunol. 15: 15–17 10.1002/0471142735.im1507s78 PubMed DOI

Steiner SS. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. (2005) Ann Neurol. 58: 939–945. PubMed

Woodruff JF, Woodruff JJ. Involvement of T lymphocytes in the pathogenesis of coxsackie virus B3 heart disease. J Immunol 113: 1726–1734. PubMed

Gironès N, Rodriguez CI, Carrasco-Marin E, Hernáez RF, de Rego JL, et al. (2001) Dominant T- and B-cell epitopes in an autoantigen linked to Chagas disease. J Clin Invest 107: 985–993. PubMed PMC

Gironès N, Cuervo H, Fresno M. Trypanosoma cruzi-induced molecular mimicry and Chagas disease. Curr Top Microbiol Immunol 296: 89–123. PubMed

Ribeiro CH, López NC, Ramirez GA, Valck CE, Molina MC, et al. (2009) Trypanosoma cruzi calreticulin: a possible role in Chagas disease autoimmunity. Mol Immunol 46: 1092–1099. PubMed

Leon JS, Dengman DM (2003) The significance of autoimmunity in the pathogenesis of Chagas heart dissease. Front Biosci 8: e315–e322. PubMed

Hyland KV, Engman DM (2006) Further thoughts on where we stand on the autoimmunity hypothesis of Chagas disease. Trends Parasitol 22: 101–102. PubMed

Teixeira AR, Santos-Buch CA (1975) The Immunology of Experimental Chagas disease. II. Delayed hypersensitivity to Trypanosoma cruzi antigen. Immunology 28: 401–410. PubMed PMC

Teixeira AR, Teixeira ML, Santos-Buch CA (1975) The immunology of experimental Chagas' disease. IV. Production of lesions in rabbits similar to those of chronic Chagas' disease in man. Am J Pathol 80: 163–180. PubMed PMC

Teixeira AR, Nitz N, Bernal FM, Hecht MM (2012) Parasite induced genetically driven autoimmune Chagas heart disease in the chicken model. J Vis Exp 29: 3716 10.3791/3716 PubMed DOI PMC

Nitz N, Gomes C, de Cássia Rosa A, D'Souza-Ault MR, Moreno F, et al. (2004) Heritable integration of kDNA minicircle sequences from Trypanosoma cruzi into the avian genome: insights into human Chagas disease. Cell 118: 175–186. PubMed

Hecht MM, Nitz N, Araujo PF, Sousa AO, Rosa A de C, et al. (2010) Inheritance of DNA transferred from American trypanosomes to human hosts. PLoS One 5: e9181. PubMed PMC

Ochsenreiter T, Anderson S, Wood ZA, Hadjuk SL (2008) Alternative RNA editing produces a novel protein involved in mitochondrial DNA maintenance in trypanosomes. Mol Cell Biol 28: 5595–5604. PubMed PMC

Thomas S, Martinez LL, Westenberger SJ, Sturm NR (2007) A population study of the minicircles in Trypanosoma cruzi: predicting guide RNAs in the absence of empirical RNA editing. BMC Genomics 8: 133. PubMed PMC

Messenger LA, Llewellyn MS, Bhattacharyya T, Franzén O, Lewis MD (2012) Multiple mitochondrial introgression events and heteroplasmy in trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis 6: e1584 doi: 10.1371 PubMed PMC

Hines JC, Ray DS (2011) A second mitochondrial DNA primase is essential for cell growth and kinetoplast minicircle DNAreplication in Trypanosoma brucei. Eukaryot Cell 10: 445–454. PubMed PMC

Schulte RD, Makus C, Schulenburg H (2013) Host–parasite coevolution favours parasite genetic diversity and horizontal gene transfer. J. Evol. Biol. 26: 1836–1840. PubMed

Kumar CS, Qureshi SF, Ali A, Satyanarayana ML, Rangaraju A, et al. (2013) Hidden magicians of genome evolution. Indian J Med Res 137: 1052–1060. PubMed PMC

Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. PNAS 104: 12046–12051. PubMed PMC

Wijayawardena BK, Minchella DJ, DeWoody JA (2013) Hosts, parasites, and horizontal gene transfer. Trends Parasitol 29: 329–338. PubMed

Niewiadomska AM, Gifford RJ. (2013). The Extraordinary Evolutionary History of the Reticuloendotheliosis Viruses. PLoS Biol. Doi: e1001642. PubMed PMC

Elmer JJ, Christensen MD, Rege K (2013) Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. J Contr Rel 172: 246–257. PubMed PMC

Finnegan DJ (2012) Retrotransposons. Curr Biol 22: R432–4377. PubMed

Gilbert C, Schaack S, Pace JK 2nd, Brindley PJ, Feschotte C (2010) A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464: 1347–1350 10.1038/nature08939 PubMed DOI PMC

Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, et al. (2013) Retroelements: molecular features and implication s for disease. Genes Genet Syst 88: 31–45. PubMed

Ivancevic AM, Walsh AM, Kortschak RD, Adelson DL (2013) Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution. Bioessays 35: 1071–1082. PubMed

Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Cur Op Gen & Dev 13: 651–658. PubMed

Simões-Barbosa A, Argañaraz ER, Barros AM, Rosa A de C, Alves NP, et al. (2006) Hitchhiking Trypanosoma cruzi minicircle DNA affects gene expression in human host cells via LINE-1 retrotransposon. Mem Inst Oswaldo Cruz 101: 833–843. PubMed

International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921. PubMed

International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716. PubMed

Teixeira AR, Argañaraz ER, Freitas LH Jr, Lacava ZG, Santana JM, et al. (1994) Possible integration of Trypanosoma cruzi kDNA minicircles into the host cell genome by infection. Mutat Res 305: 197–209. PubMed

Teixeira AR, Lacava ZG, Santana JM, Luna H (1991) Insertion of Trypanosoma cruzi DNA in the genome of mammal host cell through infection. Rev Soc Bras Med Trop 24: 55–58. PubMed

Teixeira AR, Nascimento RJ, Sturm NR (2006) Evolution and pathology in chagas disease—a review. Mem Inst Oswaldo Cruz 101: 463–491. PubMed

Sch€onknecht G, Weber APM, Lercher MJ (2013) Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. Bioessays 36: 9–20. PubMed

Osburn BI, MacLachlan NJ, Terrell TG (1982) Ontogeny of the immune system. J Am Vet Med Ass 181: 1049–1052. PubMed

Plachy J (1984) Hierarchy of the B (MHC) haplotypes controlling resistance to Rous sarcoma in a model of inbred lines of chickens. Folia Biol (Praha) 30: 412–425. PubMed

Plach J. The chicken—a laboratory animal of the class Aves. Folia Biol (Praha). (2000) 46: 17–23. PubMed

Plachý JV, Hejnar JV, Trtková K, Trejbalová K, Svoboda J, et al. (2001) DNA vaccination against v-src oncogene-induced tumours in congenic chickens. Vaccine 19: 4526–4535. PubMed

Kaufman J (2013) Antigen processing and presentation: evolution from a bird's eye view. Mol Immunol 55: 159–161. PubMed PMC

Salomonsen J, Chattaway JA, Chan AC, Parker A, Huguet S, et al. (2014) Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns. PLoS Genet 10: e1004417 10.1371/journal.pgen.1004417 PubMed DOI PMC

Moser DR, Kirchhoff LV, Donelson JE (1989) Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol 27: 1477–1482. PubMed PMC

Sturm NR, Degrave W, Morel C, Simpson L (1989) Sensitive detection and schizodeme classification of Trypanosoma cruzi cells by amplification of kinetoplast minicircle DNA sequences: use in diagnosis of Chagas' disease. Mol Biochem Parasitol 33: 205–214. PubMed

Magalhães AD, Charneau S, Paba J, Guércio RA, Teixeira AR, et al. (2008) Trypanosoma cruzi alkaline 2-DE: Optimization and application to comparative proteome analysis of flagellate life stages. Proteome Sci 6: 24 10.1186/1477-5956-6-24.44 PubMed DOI PMC

Mendes DG, Lauria-Pires L, Nitz N, Lozzi SP, Nascimento RJ, et al. (2007) Exposure to mixed asymptomatic infections with Trypanosoma cruzi, Leishmania braziliensis and Leishmania chagasi in the human population of the greater Amazon. Trop Med Int Health 12: 629–636. PubMed

Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, et al. (2007) PRAS40 and PRR5-like protein are new mTor interactors that regulate apoptosis. PLoS ONE 2: e217. PubMed PMC

dos Santos RR, Rossi MA, Laus JL, Silva JS, Savino W, et al. (1992) Anti-CD4 abrogates rejection and reestablishes long-term tolerance to syngeneic newborn hearts grafted in mice chronically infected with Trypanosoma cruzi . J Exp Med 175: 29–39. PubMed PMC

Tarleton RL, Zhang L, Downs MO (1997) "Autoimmune rejection" of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. Proc Natl Acad Sci USA 94: 3932–3937. PubMed PMC

Wilson FD. (2011). Histomorphometry of Bone Marrow and Other Tissues in Diseases of Broiler Chickens. Eds.: American College of Veterinary Pathologists, American Society for Veterinary Clinical Pathology, 19 p.

Campbell TW. (1994) Processing the Avian Hematologic Sample. Chapter 9 Hematology. In: Ritchie BW, Harrison GJ, Harrison LR. Eds. Wingers Publishing Inc., Lake Worth, Florida, 1353 p 67. 67.

Vassilopoulos G, Wang P-R, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422: 901–904. PubMed

Diestelhorst C, Boos J, McCune JS, Hempel G. (2014). Population pharmacokinetics of intravenous busulfan in children: revised body weight-dependent NONMEM® model to optimize dosing. Eur J Clin Pharmacol (Epub ahead of print). PubMed

Tesfaye H, Branova R, Klapkova E, Prusa R, Janeckova D, et al. (2014) The importance of Therapeutic Drug Monitoring (TDM) for parenteral busulfan dosing in conditioning regimen for Hematopoietic Stem Cell Transplantation (HSCT) in children. Ann Transplant 19: 214–224. PubMed

Byamba D, Kim DY, Kim DS, Kim TG, Jee H, et al. (2014). Skin-enetrating methotrexate alleviates imiquimod-induced psoriasiform dermatitis via decreasing IL-17-producing gamma delta T cells. Exp Dermatol. 10.1111/exd.12448 PubMed DOI

Catarsi E, Pelliccia V, Pizzanelli C, Pesaresi I, Cosottini M et al.. (2014). Cyclophosphamide and methotrexate in Susac's Syndrome: a successful sequential therapy in a case with involvement of the cerebellum. Clin Rheumatol. [Epub ahead of print]. PubMed

Hsia TC, Yu CC, Hsu SC, Tang NY, Lu HF, et al. (2014). Cantharidin induces apoptosis of H460 human lung cancer cells through mitochondria-dependent pathways. Int J Oncol. 10.3892/ijo.2014.2428 PubMed DOI

Pessach I, Shimoni A, Nagler A (2012) Apoptotic cells in allogeneic hematopoietic stem cell transplantations: "turning trash into gold". Leuk Lymphoma 53: 2130–2135 10.3109/10428194.2012.690099 PubMed DOI

Bates D, Abraham S, Campbell M, Zehbe I, Curiel L (2014) Development and characterization of an antibody labeled super-paramagnetic iron oxide constrast agent targeting prostate cancer cells for magnetic ressonance imaging. PLoS ONE 9: e97220. PubMed PMC

Pasto A, Marchesi M, Diamantini A, Frasson C, Curtarello M, et al. (2012). PKH26 Staining Defines Distinct Subsets of Normal Human Colon Epithelial Cells at Different Maturation Stages. PLoS ONE 7: 8 | e43379. PubMed PMC

Boutonnat J, Faussat A-M, Marie J-P, Bignon J, Wdzieczak-Bakala J, et al. (2005) Usefulness of PKH fluorescent labelling to study leukemic cell proliferation with various cytostatic drugs or acetyl tetrapeptide – AcSDKP. BMC Cancer 5: 120. PubMed PMC

Rafiq S, Butchar J P, Cheney C, Mo X, Trotta R, et al. (2013) Comparative Assessment of Clinically Utilized CD20-directed Antibodies in Chronic Lymphocytic. Leukemia Cells Reveals Divergent NK cell, Monocyte and Macrophage Properties. Immunol 190: 2702–2711. PubMed PMC

Badri L, Walker NM, Ohtsuka T, Wang Z, Delmar M, et al. (2011) Epithelial interactions and local engraftment of lung-resident mesenchymal stem cells. Am J Respir Cell Mol Biol 45: 809–816. PubMed PMC

P Porcu, J Gaddy, Broxmeyer HE (1998) Alloantigen-induced unresponsiveness in cord blood T lymphocytes is associated with defective activation of Ras. Proc. Natl. Acad. Sci. USA 95: 4538–4543. PubMed PMC

Hsieh JY, Chen SH, Hung HC (2009) Functional roles of the tetramer organization of malic enzyme. J Biol Chem 284: 18096–18105. PubMed PMC

Burnet FM, Stone JD, Edney M (1950) The failure of antibody production in the chicken embryo. Aust J Exp Biol Med Sci 28: 291–298. PubMed

Jasmin, Jelicks LA, Koba W, Tanowitz H, Mendez-Otero R, et al. (2012) Mesenchymal bone marrow cell therapy in a mouse model of Chagas disease. Where do the cells go? PLoS NTD 6: e971. PubMed PMC

Whitehouse MW, Orr KJ, Beck FW, Pearson CM (1974) Freund's Adjuvant: reltionship of arthritogenicity and adjuvanicity in rats to vehicle composition. Immunology 27: 311–330. PubMed PMC

Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle Physiol Rev. 82: 291–329. PubMed

Hollinger K1, Yang CX, Montz RE, Nonneman D, Ross JW, et al. (2014) Dystrophin insufficiency causes selective muscle histopathology and loss of dystrophin-glycoprotein complex assembly in pig skeletal muscle. FASEB J 28: 1600–9 10.1096/fj.13-241141 PubMed DOI PMC

Nigro G, Politano L, Nigro V, Petretta VR, Comi LI (1994) Mutation of dystrophin gene and cardiomyopathy. Neuromuscul Disord 4: 371–379. PubMed

Garcia SB, Aranha AL, Brosci FR Volpe F (2003) A Retrospective study of histopathological findings in 894 cases of megacolon. What is the relationship between megacolon and colonic cancer? Rev. Inst. Med. trop. S. Paulo 45: 91–93. PubMed

Oliveira EC, Leite MSB, Miranda JAR, Andrade ALSS, et al. (2014) Chronic Trypanosoma cruzi infection associated with low incidence of 1,2-dimethylhydrazine-induced colon cancer in rats. Carcinogenesis 22: 737–740. PubMed

Junqueira C, Santos LI, Galvão-Filho B, Teixeira S, Rodrigues FG, et al. (2011) Trypanosoma cruzi as an effective cancer antigen delivery vector. Proc Natl Acad Sci USA 108: 19695–19700 doi:1073/pnas 1110030108 PubMed PMC

Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, et al. (2001) Intra–bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 97: 3292–3299. PubMed

Garza-Madrid ME, Borbolla-Escoboza JR, López-Hernández MA (2004) Autologous bone marrow transplantation as a treatment for autoimmune disease: mechanisms and results. Gac Med Mex 140: 531–539. PubMed

Sikes M, Nikolic B (2005) Treatment of severe autoimmune disease by stem-cell transplantation. Nature 435: 620–627. PubMed

Vanikar AV, Dave SD, Thakkar UG, Trivedi HL (2010). Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int: 582382. doi: 10.4061/2010/582382. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...