Comparing morbidity and cancer control after 3D-conformal (70/74 Gy) and intensity modulated radiotherapy (78/82 Gy) for prostate cancer
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu klinické zkoušky kontrolované, časopisecké články
- MeSH
- celková dávka radioterapie MeSH
- gastrointestinální nemoci diagnóza mortalita MeSH
- hodnocení rizik MeSH
- incidence MeSH
- kauzalita MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokální recidiva nádoru diagnóza mortalita prevence a kontrola MeSH
- mužské urogenitální nemoci diagnóza metabolismus MeSH
- nádory prostaty diagnóza mortalita radioterapie MeSH
- přežití bez známek nemoci MeSH
- radiační poranění mortalita MeSH
- radioterapie s modulovanou intenzitou metody mortalita MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky kontrolované MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
PURPOSE: The purpose of this work was to compare toxicity and cancer control between patients with prostate cancer treated using three-dimensional conformal radiotherapy (3D-CRT) and those treated using intensity-modulated radiation therapy (IMRT). METHODS AND MATERIALS: A total of 553 patients with prostate cancer were treated with 3D-CRT 70-74 Gy (3D-CRT 70, 3D-CRT 74) or IMRT 78-82 Gy (IMRT 78, IMRT/SIB 82). Late toxicity was scored according to FC-RTOG/LENT criteria. Biochemical failure was defined using the Phoenix and ASTRO definitions. RESULTS: The 5-year risk of grade 2-4 genitourinary toxicity was 26.3 % (3D-CRT 70), 27.2 % (3D-CRT 74), 17.3 % (IMRT 78), and 25.1 % (IMRT/SIB 82) without statistical differences. The 5-year risk of grade 2-4 gastrointestinal toxicity was 19.4 % (3D-CRT 70), 42.1 % (3D-CRT 74), 20.5 % (IMRT 78), and 26.6 % (IMRT/SIB 82). The differences between 3D-CRT 74 and 3D-CRT 70 and between 3D-CRT 74 and IMRT 78 were statistically significant (log rank p = 0.03). The 5-year Phoenix PSA relapse-free survival (PSA-RFS) in low-risk, intermediate-risk, and high-risk patients treated using 3D-CRT were 89.4, 65.5, and 57.8 %, respectively. Patients treated with IMRT achieved the following results: 90.9, 89.4, and 83.9 %. Clinical relapse-free survival (C-RFS) in patients treated using 3D-CRT vs. IMRT for the aforementioned groups were 94.7 vs. 100 %, 86.8 vs. 98.6 %, and 84.4 vs. 94.5 %. Disease-free survival (DFS) for patients treated using 3D-CRT were 83.1, 70.9, and 71.5 %. The IMRT group reached 95.8, 89.1, and 87.6 %. The PSA-RFS for intermediate- and high-risk patients were statistically significant, while C-RFS and DFS were marginally better. CONCLUSION: Dose escalation with IMRT was associated with improved cancer control in intermediate- and high-risk patients in comparison with 3D-CRT, without compromising toxicity.
Zobrazit více v PubMed
Phys Med. 2005 October - December;21(4):129-35 PubMed
Radiother Oncol. 2014 Jan;110(1):104-9 PubMed
Radiother Oncol. 2000 Jun;55(3):241-9 PubMed
Eur Urol. 2011 Dec;60(6):1133-9 PubMed
Lancet Oncol. 2014 Apr;15(4):464-73 PubMed
Semin Radiat Oncol. 2008 Jan;18(1):48-57 PubMed
Radiother Oncol. 2009 Mar;90(3):367-76 PubMed
Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):980-8 PubMed
Int J Radiat Oncol Biol Phys. 2012 Sep 1;84(1):125-9 PubMed
Cancer. 1999 Jun 1;85(11):2460-8 PubMed
Radiother Oncol. 2013 May;107(2):140-6 PubMed
Strahlenther Onkol. 2012 Nov;188(11):990-6 PubMed
Int J Radiat Oncol Biol Phys. 2002 Oct 1;54(2):427-35 PubMed
Strahlenther Onkol. 2008 Dec;184(12 ):679-85 PubMed
Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1124-9 PubMed
Int J Radiat Oncol Biol Phys. 2013 Mar 1;85(3):686-92 PubMed
Rep Pract Oncol Radiother. 2012 May 05;17(3):134-40 PubMed
Strahlenther Onkol. 2007 Jun;183(6):307-13 PubMed
Int J Radiat Oncol Biol Phys. 2011 Jun 1;80(2):437-44 PubMed
Strahlenther Onkol. 2005 Mar;181(3):172-8 PubMed
Radiother Oncol. 2009 Oct;93(1):57-63 PubMed
Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):685-91 PubMed
Int J Radiat Oncol Biol Phys. 2008 Jan 1;70(1):67-74 PubMed
Semin Radiat Oncol. 2013 Jul;23(3):182-90 PubMed
Semin Radiat Oncol. 2008 Jan;18(1):58-66 PubMed
Int J Radiat Oncol Biol Phys. 1997 Apr 1;38(1):59-63 PubMed
Strahlenther Onkol. 2006 Sep;182(9):537-42 PubMed
Strahlenther Onkol. 2009 Feb;185(2):94-100 PubMed
Med Dosim. 1999 Winter;24(4):255-63 PubMed
Strahlenther Onkol. 2007 Feb;183(2):57-62 PubMed
Int J Radiat Oncol Biol Phys. 2013 Dec 1;87(5):932-8 PubMed
Clin Oncol (R Coll Radiol). 2012 Sep;24(7):461-73 PubMed
Int J Radiat Oncol Biol Phys. 2007 Jul 15;68(4):1053-8 PubMed
Strahlenther Onkol. 2010 Apr;186(4):197-202 PubMed
JAMA. 2012 Apr 18;307(15):1611-20 PubMed
Strahlenther Onkol. 2010 Nov;186(11):600-6 PubMed
JAMA. 2005 Sep 14;294(10):1233-9 PubMed
Int J Radiat Oncol Biol Phys. 2008 Nov 1;72(3):799-807 PubMed
Strahlenther Onkol. 2014 Jan;190(1):48-53 PubMed