A 40-bp VNTR polymorphism in the 3'-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 NR009298
NINR NIH HHS - United States
PubMed
26058807
PubMed Central
PMC4472402
DOI
10.1186/s12993-015-0066-8
PII: 10.1186/s12993-015-0066-8
Knihovny.cz E-zdroje
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- alkoholismus epidemiologie genetika MeSH
- dítě MeSH
- dospělí MeSH
- epigeneze genetická MeSH
- genotyp MeSH
- hyperkinetická porucha epidemiologie genetika MeSH
- impulzivní chování MeSH
- lidé středního věku MeSH
- lidé MeSH
- minisatelitní repetice genetika MeSH
- mladiství MeSH
- neuropsychologické testy MeSH
- počítačová simulace MeSH
- proteiny přenášející dopamin přes plazmatickou membránu genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- proteiny přenášející dopamin přes plazmatickou membránu MeSH
- SLC6A3 protein, human MeSH Prohlížeč
BACKGROUND: ADHD and alcoholism are psychiatric diseases with pathophysiology related to dopamine system. DAT1 belongs to the SLC6 family of transporters and is involved in the regulation of extracellular dopamine levels. A 40 bp variable number tandem repeat (VNTR) polymorphism in the 3'-untranslated region of DAT1/SLC6A3 gene was previously reported to be associated with various phenotypes involving disturbed regulation of dopaminergic neurotransmission. METHODS: A total of 1312 subjects were included and genotyped for 40 bp VNTR polymorphism of DAT1/SLC6A3 gene in this study (441 alcoholics, 400 non-alcoholic controls, 218 ADHD children and 253 non ADHD children). Using miRBase software, we have performed a computer analysis of VNTR part of DAT1 gene for presence of miRNA binding sites. RESULTS: We have found significant relationships between ADHD and the 40 bp VNTR polymorphisms of DAT1/SLC6A3 gene (P < 0.01). The 9/9 genotype appeared to reduce the risk of ADHD about 0.4-fold (p < 0.04). We also noted an occurrence of rare genotypes in ADHD (frequency different from controls at p < 0.01). No association between alcoholism and genotype frequencies of 40 bp VNTR polymorphism of DAT1/SLC6A3 gene has been detected. CONCLUSIONS: We have found an association between 40 bp VNTR polymorphism of DAT1/SLC6A3 gene and ADHD in the Czech population; in a broad agreement with studies in other population samples. Furthermore, we detected rare genotypes 8/10, 7/10 and 10/11 present in ADHD boys only and identified miRNAs that should be looked at as potential novel targets in the research on ADHD.
Zobrazit více v PubMed
Mergy MA, Gowrishankat R, Davis GL, Jessen TN, Wright J, Stanwood G, et al. Genetic targeting of the amphetamine and methylphenidate dopamine transporter: On the path to an animal model of attention-deficit hyperactivity disorder. Neurochem Inter. 2014;74:56–7. doi: 10.1016/j.neuint.2013.11.009. PubMed DOI PMC
Heinz A, Goldman D, Galinat J, Schumann G, Puls I. Pharmacogenetic insights to monoaminergic dysfunction in alcohol dependence. Psychopharmacology (Berl) 2004;174:561–70. doi: 10.1007/s00213-004-1903-x. PubMed DOI
van der Zwaluw CS, Engels RC, Buitelaar J, Verkes RJ, Franke B, Scholte RH. Polymorphisms in the dopamine transporter gene (SLC6A3/DAT1) and alcohol dependence in humans: a systematic review. Pharmacogenomics. 2009;10:853–66. doi: 10.2217/pgs.09.24. PubMed DOI
Hitri A, Hurd YL, Wyatt RJ, Deutsch SI. Molecular, functional and biochemical characteristics of the dopamine transporter: regional differences and clinical relevance. Clin Neuropharmacol. 1994;17:1–22. doi: 10.1097/00002826-199402000-00001. PubMed DOI
Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med. 2013;34:197–219. doi: 10.1016/j.mam.2012.07.002. PubMed DOI PMC
Iversen LL. Neurotransmitter transporters and their impact on the development of psychopharmacology. Brit J Pharmacol. 2006;147:S82–8. doi: 10.1038/sj.bjp.0706428. PubMed DOI PMC
Jayanthi LD, Ramamoorthy S. Regulation of monoamine transporters: Influence of psychostimulants and therapeutic antidepressants. AAPS J. 2005;7:73. doi: 10.1208/aapsj070373. PubMed DOI PMC
Wilens T. Mechanisms of action of agents in ADHD. J Clin Psychiatry. 2006;67(Suppl 8):32–7. PubMed
VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet. 2005;6:55. doi: 10.1186/1471-2156-6-55. PubMed DOI PMC
Miller GW, Staley JK, Heilman CJ, Perez JT, Mash DC, Rye DB, et al. Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol. 1997;41:530–9. doi: 10.1002/ana.410410417. PubMed DOI
Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol. 1999;409:38–56. doi: 10.1002/(SICI)1096-9861(19990621)409:1<38::AID-CNE4>3.0.CO;2-1. PubMed DOI
Hadley JA, Nenert R, Kraguljac NV, Bolding MS, White DM, Skidmore FM, Visscher KM, Lahti AC. Ventral tegmental area/midbrain functional connectivity and response to antipsychotic medication in schizophrenia. Neuropsychopharmacology. 2014; doi: 10.1038/npp.2013.305. PubMed PMC
Paclt I, Drtílková I, Kopečková M, Theiner P, Šerý O, Čermáková N. The association between TaqI A polymorphism of ANKK1 (DRD2) gene and ADHD in the Czech boys aged between 6 and 13 years. Neuro Endocrinol Lett. 2010;31:131–6. PubMed
Drtílková I, Šerý O, Theiner P, Uhrová A, Žáčková M, Balaštíková B, et al. Clinical and molecular-genetic markers of ADHD in children. Neuro Endocrinol Lett. 2008;29:320–7. PubMed
Šerý O, Drtílková I, Theiner P, Pitelová R, Štaif R, Znojil V, et al. Polymorphism of DRD2 gene and ADHD. Neuro Endocrinol Lett. 2006;27:236–40. PubMed
Šerý O, Didden W, Mikeš V, Pitelová R, Znojil V, Zvolský P. The association between high-activity COMT allele and alcoholism. Neuro Endocrinol Lett. 2006;27:231–5. PubMed
Šerý O, Šťastný F, Zvolský P, Hlinomazová Z, Balcar VJ. Association between Val66Met polymorphism of Brain-Derived Neurotrophic Factor (BDNF) gene and a deficiency of colour vision in alcohol-dependent male patients. Neurosci Lett. 2011;499:154–7. doi: 10.1016/j.neulet.2011.05.038. PubMed DOI
World Health Organization . The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic criteria for research. Geneva: World Health Organization; 1993.
American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 4. Washington, DC: American Psychiatric Association; 1994.
Conners CK, Sitarenios G, Parker JD, Epstein JN. Revision and restandardization of the Conners teacher rating scale (CTRS-R): Factor structure, reliability and criterion validity. J Abnorm Child Psychol. 1998;26:279–91. doi: 10.1023/A:1022606501530. PubMed DOI
Conners CK, Sitarenios G, Parker JD, Epstein J. The revised Conners parent rating scale (CPRS-R): Factor structure, reliability and criterion validity. J Abnorm Child Psychol. 1998;26:257–68. doi: 10.1023/A:1022602400621. PubMed DOI
Švančara J. Test diskriminácie tvaru [(Shape discrimination test) (In Slovak)] Bratislava: Psychodiagnosticke a didakticke testy; 1976.
Müllner J, Pufflerová Š, Csurma L, Farkaš G, Ďuričová E, Zápotočná O. TE-NA-ZO: Test nachádzania známych obrázkov (verzia pre deti). [(TE-NA-ZO: Test of finding of familiar figures (version for children))(In Slovak)] Bratislava: Psychodiagnosticke a didakticke testy; 1984.
Letz R. NES2 User’s manual (version 4.7) Atlanta: Neurobehavioral Systems, Inc.; 1998.
Selzer ML. The Michigan alcoholism screening test: the quest for a new diagnostic instrument. Am J Psychiat. 1971;127:1653–8. doi: 10.1176/ajp.127.12.1653. PubMed DOI
Ewing JA. Detecting alcoholism. The CAGE questionnaire. JAMA. 1984;252:1905–7. doi: 10.1001/jama.1984.03350140051025. PubMed DOI
Shinohara M, Mizushima H, Hirano M, Shioe K, Nakazawa M, Hiejima Y, et al. Eating disorders with binge-eating behaviour are associated with the s allele of the 3’-UTR VNTR polymorphism of the dopamine transporter gene. J Psychiatry Neurosci. 2004;29:134–7. PubMed PMC
R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC
Arnsten AF, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51:356–67. doi: 10.1016/j.jaac.2012.01.008. PubMed DOI
Wilens TE, Spencer TJ. Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. Postgrad Med. 2010;122:97–109. doi: 10.3810/pgm.2010.09.2206. PubMed DOI PMC
Bush G. Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:1160–7. doi: 10.1016/j.biopsych.2011.01.022. PubMed DOI PMC
Rubia K, Cubillo A, Woolley J, Brammer MJ, Smith A. Disorder-specific dysfunctions in patients with attention-deficit/hyperactivity disorder compared to patients with obsessive-compulsive disorder during interference inhibition and attention allocation. Hum Brain Mapp. 2011;32:601–11. doi: 10.1002/hbm.21048. PubMed DOI PMC
Tripp G, Wickens JR. Neurobiology of ADHD. Neuropharmacology. 2009;57:579–89. doi: 10.1016/j.neuropharm.2009.07.026. PubMed DOI
Altabella L, Zoratto F, Adriani W, Canese R. MR imaging-detectable metabolic alterations in attention deficit/hyperactivity disorder: from preclinical to clinical studies. AJNR Am J Neuroradiol. 2014;35(Suppl 6):S55–63. doi: 10.3174/ajnr.A3843. PubMed DOI
Brown AB, Biederman J, Valera EM, Doyle AE, Bush G, Spencer T, et al. Effect of dopamine transporter gene (SLC6A3) variation on dorsal anterior cingulate function in attention-deficit/hyperactivity disorder. Am J Med Genet Part B Neuropsychiatric Genetics. 2010;153B:365–75. PubMed PMC
Li Z, Chang SH, Zhang LY, Gao L, Wang J. Molecular genetic studies of ADHD and its candidate genes: A review. Psychiatry Res. 2014;219:10–24. doi: 10.1016/j.psychres.2014.05.005. PubMed DOI
Kebir O, Joober R. Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: a review of genetic association studies. Eur Arch Psychiatry Clin Neurosci. 2011;261:583–94. doi: 10.1007/s00406-011-0207-5. PubMed DOI
Du Y, Nie Y, Li Y, Wan YJ. The association between the SLC6A3 VNTR 9-repeat allele and alcoholism - a meta-analysis. Alcohol Clin Exp Res. 2011;35:1625–34. PubMed PMC
Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009;126:51–90. doi: 10.1007/s00439-009-0694-x. PubMed DOI
Kim P, Choi CS, Park JH, Joo SH, Kim SY, Ko HM, et al. Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J Neurosci Res. 2014;92:658–70. doi: 10.1002/jnr.23275. PubMed DOI
Neale BJ, Medland SH, Ripke S, Asherson P, Franke B, Lesh KP, et al. Meta-analysis of genome-wide association studies of attention deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010;49:884–97. doi: 10.1016/j.jaac.2010.06.008. PubMed DOI PMC
Šerý O, Povová J, Balcar VJ. Perspectives in genetic prediction of Alzheimer’s disease. Neuro Endocrinol Lett. 2014;35:101–8. PubMed
Jánošíková B, Zavadáková P, Kožich V. Single-nucleotide polymorphisms in genes relating to homocysteine metabolism: how applicable are public SNP databases to a typical European population? Eur J Hum Genet. 2005;13:86–95. doi: 10.1038/sj.ejhg.5201282. PubMed DOI
Costa A, Riedel M, Müller U, Möller HJ, Ettinger U. Relationship between SLC6A3 genotype and striatal dopamine transporter availability: a meta-analysis of human single photon emission computed tomography studies. Synapse. 2011;65:998–1005. doi: 10.1002/syn.20927. PubMed DOI
Fuke S, Sasagawa N, Ishiura S. Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3’ non-coding polymorphic region of the human dopamine transporter (DAT1) gene. J Biochem. 2005;137:205–16. doi: 10.1093/jb/mvi020. PubMed DOI
Koutsilieri E, Riederer P, du Plessis S, Scheller C. A short review on the relation between the dopamine transporter 10/10-repeat allele and ADHD: implications for HIV infection. Atten Defic Hyperact Disord. 2014; doi: 10.1007/s12402-014-0134-1. PubMed
Kanno K, Ishiura S. Differential effects of the HESR/HEY transcription factor family on dopamine transporter reporter gene expression via variable number of tandem repeats. J Neurosci Res. 2011;89:562–75. doi: 10.1002/jnr.22593. PubMed DOI
Kanno K, Ishiura S. The androgen receptor facilitates inhibition of human dopamine transporter (DAT1) reporter gene expression by HESR1 and HESR2 via the variable number of tandem repeats. Neurosci Lett. 2012;525:54–9. doi: 10.1016/j.neulet.2012.07.021. PubMed DOI
Moss EG. MicroRNA’s: hidden in the genome. Curr Biol. 2002;12:R138–40. doi: 10.1016/S0960-9822(02)00708-X. PubMed DOI
Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH, et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia. 2009;23:313–22. doi: 10.1038/leu.2008.286. PubMed DOI
Weedon-Fekjær MS, Sheng Y, Sugulle M, Johnsen GM, Herse 5, Redman CW, Lyle R, Dechend R, Staff AC. Placental miR-1301 is dysregulated in early-onset preeclampsia and inversely correlated with maternal circulating leptin. Placenta. 2014; doi: 10.1016/j.placenta.2014.07.002. PubMed
Voellenkle C, van Rooij J, Guffanti A, Brini E, Fasanaro P, Isaia E, et al. Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA. 2012;18:472–84. doi: 10.1261/rna.027615.111. PubMed DOI PMC
He J, Jiang S, Li FL, Zhao XJ, Chu EF, Sun MN, et al. MicroRNA-30b-5p is involved in the regulation of cardiac hypertrophy by targeting CaMKIIδ. J Investig Med. 2013;61:604–12. PubMed
Miao CG, Yang YY, He X, Xu T, Huang C, Huang Y, et al. New advances of microRNAs in the pathogenesis of rheumatoid arthritis, with a focus on the crosstalk between DNA methylation and the microRNA machinery. Cell Signal. 2013;25:1118–25. doi: 10.1016/j.cellsig.2013.01.024. PubMed DOI
Paclt I, Ptáček R, Kuželová H, Čermáková N, Trefilová A, Kollárová P, et al. Circadian rhythms of saliva melatonin in ADHD, anxious and normal children. Neuro Endocrinol Lett. 2011;32:790–8. PubMed
Park S, Cho SC, Kim JW, Shin MS, Yoo HJ, Min Oh S, Hyun Han D, Hoon Cheong J, Kim BN. Differential perinatal risk factors in children with attention-deficit/hyperactivity disorder by subtype. Psychiatry Res. 2014; doi: 10.1016/j.psychres.2014.05.036. PubMed
Ptáček R, Kuželová H, Stefano GB, Raboch J, Kream RM, Goetz M. ADHD and growth: questions still unanswered. Neuro Endocrinol Lett. 2014;3:1–6. PubMed
Womersley JS, Hsieh JH, Kellaway LA, Gerhardt GA, Russell VA. Maternal separation affects dopamine transporter function in the spontaneously hypertensive rat: an in vivo electrochemical study. Behav Brain Funct. 2011;7:49. doi: 10.1186/1744-9081-7-49. PubMed DOI PMC
Russell VA. Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci. 2011;Chapter 9:Unit 9.35; doi: 10.1002/0471142301.ns0935s54. PubMed
Chuhma N, Choi WY, Mingote S, Rayport S. Dopamine neuron glutamate cotransmission: frequency dependent modulation in the mesoventromedial projections. Neuroscience. 2009;164:1068–83. doi: 10.1016/j.neuroscience.2009.08.057. PubMed DOI PMC
Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A. Dopaminergic terminals in the nucleus accumbens but not in the dorsal striatum corelease glutamate. J Neurosci. 2010;30:8229–33. doi: 10.1523/JNEUROSCI.1754-10.2010. PubMed DOI PMC
Schulte T, Oberlin BG, Kareken DA, Marinkovic K, Müller-Oehring EM, Meyerhoff DJ, et al. How acute and chronic alcohol consumption affects brain networks: insights from multimodal neuroimaging. Alcohol Clin Exp Res. 2012;36:2017–27. doi: 10.1111/j.1530-0277.2012.01831.x. PubMed DOI PMC