Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26204901
PubMed Central
PMC4513976
DOI
10.1186/s12989-015-0100-x
PII: 10.1186/s12989-015-0100-x
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- buněčná membrána účinky léků patologie MeSH
- Cricetulus MeSH
- hodnocení rizik MeSH
- hypoxanthinfosforibosyltransferasa genetika MeSH
- kometový test MeSH
- kontrolní body buněčného cyklu účinky léků MeSH
- kovové nanočástice * MeSH
- lidé MeSH
- mutace * MeSH
- mutační analýza DNA MeSH
- nádorové buněčné linie MeSH
- oxidační stres účinky léků MeSH
- poškození DNA * MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- sloučeniny stříbra chemická syntéza metabolismus toxicita MeSH
- tvar buňky účinky léků MeSH
- velikost částic MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- hypoxanthinfosforibosyltransferasa MeSH
- sloučeniny stříbra MeSH
BACKGROUND: The main goal of this research was to study the interactions of a fully characterized set of silver nanomaterials (Ag ENMs) with cells in vitro, according to the standards of Good Laboratory Practices (GLP), to assure the quality of nanotoxicology research. We were interested in whether Ag ENMs synthesized by the same method, with the same size distribution, shape and specific surface area, but with different charges and surface compositions could give different biological responses. METHODS: A range of methods and toxicity endpoints were applied to study the impacts of interaction of the Ag ENMs with TK6 cells. As tests of viability, relative growth activity and trypan blue exclusion were applied. Genotoxicity was evaluated by the alkaline comet assay for detection of strand breaks and oxidized purines. The mutagenic potential of Ag ENMs was investigated with the in vitro HPRT gene mutation test on V79-4 cells according to the OECD protocol. Ag ENM agglomeration, dissolution as well as uptake and distribution within the cells were investigated as crucial aspects of Ag ENM toxicity. Ag ENM stabilizers were included in addition to positive and negative controls. RESULTS: Different cytotoxic effects were observed including membrane damage, cell cycle arrest and cell death. Ag ENMs also induced various kinds of DNA damage including strand breaks and DNA oxidation, and caused gene mutation. We found that positive Ag ENMs had greater impact on cyto- and genotoxicity than did Ag ENMs with neutral or negative charge, assumed to be related to their greater uptake into cells and to their presence in the nucleus and mitochondria, implying that Ag ENMs might induce toxicity by both direct and indirect mechanisms. CONCLUSION: We showed that Ag ENMs could be cytotoxic, genotoxic and mutagenic. Our experiments with the HPRT gene mutation assay demonstrated that surface chemical composition plays a significant role in Ag ENM toxicity.
Bayer Technology Services GmbH Leverkusen Germany
Department of Molecular Biology University of Salzburg Salzburg Austria
Health Effects Laboratory MILK NILU Kjeller Norway
Zobrazit více v PubMed
U.S. Environmental Protection Agency . State of the Science Literature Review: Everything Nanosilver and More. 2010.
Likus W, Bajor G, Siemianowicz K. Nanosilver — does it have only one face? Acta Biochemica Polonica. 2013;4:495–501. PubMed
Lem KW, Chudhury A, Lakhani AA, Kuyate P, Haw JR, Lee DS, Iqbal Z. Use of nanosilver in consumer products. Recent Pat Nanotechnol. 2012;6:60–72. doi: 10.2174/187221012798109318. PubMed DOI
Schluesener JK, Schluesener HJ. Nanosilver: application and novel aspects of toxicology. Arch Toxicol. 2013;87:569–576. doi: 10.1007/s00204-012-1007-z. PubMed DOI
Sarsar V, Selwal KK, Selwa MK. Nanosilver: potent antimicrobial agent and its biosynthesis. Afr J Biotechnol. 2014;13:5–46.
Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces. 2010;79:5–18. doi: 10.1016/j.colsurfb.2010.03.029. PubMed DOI
Brar SK, Verma M, Tyagi RD, Surampalli RY. Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts. Waste Manag. 2010;30:504–520. doi: 10.1016/j.wasman.2009.10.012. PubMed DOI
Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ. Antimicrobial nanomaterials for water disinfection and microbial control. Potential applications and implications. Water Res. 2008;42:4591–4602. doi: 10.1016/j.watres.2008.08.015. PubMed DOI
Sotiriou GA, Pratsinis SE. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng. 2011;1:3–10. doi: 10.1016/j.coche.2011.07.001. PubMed DOI PMC
Hamouda IM. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2010;26:143–151. PubMed PMC
Nowack B, Krug HF, Height M. 120 years of nanosilver history: implication for policy makers. Envir Scien Tech. 2011;45:1177–1183. doi: 10.1021/es103316q. PubMed DOI
Chalupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI
Stone V, Jahnston H, Schins RPF. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39:613–626. doi: 10.1080/10408440903120975. PubMed DOI
Babu K, Deepa M, Shankar SG, Rai S. Effect of nano-silver on cell division and mitotic chromosomes: a prefatory siren. Internet J Nanotech. 2008;2:2–5.
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3:279–290. doi: 10.1021/nn800596w. PubMed DOI
Zanette C, Pelin M, Crosera M, Adami G, Bovenzi M, Larese FF, Florio C. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol In Vitro. 2011;25:1053–1060. doi: 10.1016/j.tiv.2011.04.005. PubMed DOI
Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190:156–162. doi: 10.1016/j.toxlet.2009.07.009. PubMed DOI
Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyuna JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Tox Lett. 2011;201:92–100. doi: 10.1016/j.toxlet.2010.12.010. PubMed DOI
Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 2011;291:65–72. doi: 10.1016/j.tox.2011.10.022. PubMed DOI
Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasse N. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett. 2011;201:27–33. doi: 10.1016/j.toxlet.2010.12.001. PubMed DOI
Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85:743–750. doi: 10.1007/s00204-010-0545-5. PubMed DOI
Jones CF, Grainger DW. In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev. 2009;61:438–456. doi: 10.1016/j.addr.2009.03.005. PubMed DOI PMC
Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11. PubMed DOI PMC
Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010;4:319–330. doi: 10.3109/17435390.2010.483745. PubMed DOI
Huk A, Izak-Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dušinska M. Is toxic potential of nanosilver dependent on its size? Part Fibre Toxicol. 2014;11:65. doi: 10.1186/s12989-014-0065-1. PubMed DOI PMC
Park MVDZ, Neigh AM, Vermeulen JP, Fonteyne LJJ, Verharen HW, Briedé JJ, Loveren H, Jong W. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32:9810–9817. doi: 10.1016/j.biomaterials.2011.08.085. PubMed DOI
Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and Mammalian cells in vitro. PLoS One. 2014;9(7):e102108. doi: 10.1371/journal.pone.0102108. PubMed DOI PMC
Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JF, Gu B, Doktycz MJ. Cytotoxicity Induced by Engineered Silver Nanocrystallites is dependent on surface coating and cell types. Langmuir. 2012;28:2727–2735. doi: 10.1021/la2042058. PubMed DOI
El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45:283–287. doi: 10.1021/es1034188. PubMed DOI
Magdolenova Z, Drlickova M, Henjum K, Rundén-Pran E, Tulinska J, Bilanicova D, Pojana G, Kazimirova A, Barancokova M, Kuricova M, Liskova A, Staruchova M, Ciampor F, Vavra I, Lorenzo Y, Collins A, Rinna A, Fjellsbø L, Volkovova K, Marcomini A, Amiry-Moghaddam M, Dusinska M. Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology. 2015;9(S1):44–56. doi: 10.3109/17435390.2013.847505. PubMed DOI
Creighton JA, Blatchford CG, Albrecht MG. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Farad Trans II. 1979;75:790–798. doi: 10.1039/f29797500790. DOI
Catalán J, Suhonen S, Huk A, Dusinska M. CHAPTER 14. Analysis of nanoparticle-induced DNA damage by the comet assay. In: Maria Sierra L, Isabel G, editors. Genotoxicity and Repair. A Practical Approach. Heidelberg Dordrecht London: Springer Protocols, Humana Press, Springer New York; 2014. p. XII, 483.
Dusinska M, Collins AR. Detection of oxidised purines and UV-induced photoproducts in DNA, by inclusion of lesion-specific enzymes in the comet assay (single cell gell electrophoresis) ATLA. 1996;24:405–411.
Foldbjerg R, Autrup H. Mechanisms of silver nanoparticles toxicity. Arch Bas App Med. 2013;1:5–15.
Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6:2295–2350. doi: 10.3390/ma6062295. PubMed DOI PMC
Huk A, Collins AR, Yamani N, Porredon C, Azqueta A, de Lapuente J, Dusinska M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis. 2015;30(1):85–8. doi: 10.1093/mutage/geu077. PubMed DOI
Sahu SC, Zheng J, Grahamb L, Chenc L, Ihried J, Youricka JJ, Sprandoa RL. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol. 2014;34:1155–66. doi: 10.1002/jat.2994. PubMed DOI
Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkins TA. Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating and composition. Environ Health Perspect. 2011;119:37–44. doi: 10.1289/ehp.1002337. PubMed DOI PMC
Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett. 2010;487:92–96. doi: 10.1016/j.cplett.2010.01.027. PubMed DOI PMC
Wang S, Lawson R, Ray PC, Yu H. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health. 2011;27:547–54. doi: 10.1177/0748233710393395. PubMed DOI PMC
Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608–19. doi: 10.1021/jp712087m. PubMed DOI
Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol. 2011;8:36–51. doi: 10.1186/1743-8977-8-36. PubMed DOI PMC
Pal S, Tak YK, Song JM. Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC
Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharma. 2008;233:404–410. doi: 10.1016/j.taap.2008.09.015. PubMed DOI
Yang WJ, Lee JH, Hong SC, Lee J, Jaebeom Lee J, Han DW. Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials. 2013;5:4689–4706. doi: 10.3390/ma6104689. PubMed DOI PMC
Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–786. doi: 10.1038/nnano.2012.207. PubMed DOI
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VS. Hardening of the nanoparticle–protein corona in metal (Au, Ag) and oxide (Fe 3 O 4, CoO, and CeO 2) nanoparticles. Small. 2011;7:3479–3486. doi: 10.1002/smll.201101511. PubMed DOI
Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Zhao J, Himly M, Riediker M, Oostingh GJ, Puntes V, Duschl A. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnology. 2015;13:1. doi: 10.1186/s12951-014-0062-4. PubMed DOI PMC
Izak-Nau E, Voetz M, Eiden S, Duschl A, Puntes VF. Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Part Fimb Toxicol. 2013;10:56–68. doi: 10.1186/1743-8977-10-56. PubMed DOI PMC
Doak SH, Manshian B, Jenkins GJ, Singh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res. 2012;14:104–111. doi: 10.1016/j.mrgentox.2011.09.013. PubMed DOI PMC
Dusinska M, Magdolenova Z, Fjellsbø LM. Toxicological aspects for nanomaterial in humans. Methods Mol Biol. 2013;948:1–12. PubMed
Hudecová A, Kusznierewicz B, Rundén-Pran E, Magdolenová Z, Hasplová K, Rinna A, Fjellsbø LM, Kruszewski M, Lankoff A, Sandberg WJ, Refsnes M, Skuland T, Schwarze P, Brunborg G, Bjøras M, Collins A, Miadoková E, Gálová E, Dusinská M. Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis. 2012;6:759–69. doi: 10.1093/mutage/ges046. PubMed DOI
Tedsree K, Tiyawat W, Ketaram K, Phetlert C. Synthesis and mutagenicity of silver nanoparticles with different sizes and shapes. Pure and applied chemistry international conference 2013 (PACCON 2013).
Kim HR, Park YJ, da Shin Y, Oh SM, Chung KH. Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environ Health Toxicol. 2013;28:e2013003. doi: 10.5620/eht.2013.28.e2013003. PubMed DOI PMC
Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, Biris AS, Heflich RH, Chen T. Genotoxicity of silver nanoparticles evaluated using the Ames Test and in vitro micronucleus assay. Mutat Res. 2012;745:4–10. doi: 10.1016/j.mrgentox.2011.11.010. PubMed DOI
Kim JY, Yang SI, Ryu JC. Cytotoxicity and genotoxicity of nanosilver in mammalian cell lines. Mol Cell Toxicol. 2010;6:119–125. doi: 10.1007/s13273-010-0018-1. DOI
Johnson GE. Mammalian cell HPRT gene mutation assay: test methods. Methods Mol Biol. 2012;817:55–67. doi: 10.1007/978-1-61779-421-6_4. PubMed DOI
Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B, Winkle LV, Pinkerton KE, Zink JI, Xia T, Nel AE. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small. 2014;10:385–398. doi: 10.1002/smll.201301597. PubMed DOI PMC
Kralj S, Rojnik M, Romih R, Jagodic M, Kos J, Makovec D. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. J Nanopart Res. 2012;12:1151. doi: 10.1007/s11051-012-1151-7. DOI
Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano. 2010;4:5321–5331. doi: 10.1021/nn100816s. PubMed DOI PMC
Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett. 2012;208:197–213. doi: 10.1016/j.toxlet.2011.11.006. PubMed DOI
Magdolenova Z, Collins AR, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. Review of recent in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8:233–278. doi: 10.3109/17435390.2013.773464. PubMed DOI
Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010;44:8337–0342. doi: 10.1021/es1020668. PubMed DOI
Prasad RY, McGee JK, Killius MG, Suarez DA, Blackman CF, DeMarini DM, Simmons SO. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol In Vitro. 2013;27:2013–21. doi: 10.1016/j.tiv.2013.07.005. PubMed DOI
Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, Wallinder IO, Möller L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small. 2013;9:970–982. doi: 10.1002/smll.201201069. PubMed DOI